

The Keadby 3 Low Carbon Gas Power Station Project

Document Ref: 6.3 PINS Ref: EN010114

The Keadby 3 (Carbon Capture Equipped Gas Fired Generating Station) Order

Land at and in the vicinity of the Keadby Power Station site, Trentside, Keadby, North Lincolnshire

Environmental Statement Volume II - Appendix 15B: Geoarchaeological Hand Auger Survey Fieldwork Report

The Planning Act 2008

The Infrastructure Planning (Environmental Impact Assessment) Regulations 2017

> Applicant: Keadby Generation Limited Date: May 2021

DOCUMENT HISTORY

Document Ref	6.3.30/Appendix 15B
Revision	VP1.0
Document Owner	AECOM

A geoarchaeological hand auger survey at Keadby 3 Low Carbon Gas Power Station, Lincolnshire.

NGR: 480761 411011 and 481979 412069 (SE 80761 11011 and SE 81979 12069)

Planning Ref: EN010114

TPA Site Code: KAS

Report No: 047/2021

i

Trent & Peak Archaeology © Unit 1, Holly Lane Chilwell Nottingham NG9 4AB 0115 8967400 (Tel.) 0115 925 9464 (Fax.) tparchaeology.co.uk trentpeak@yorkat.co.uk

	Trent and Peak Archaeology Keadby 3 Low Carbon Gas Power Station, Lincolnshire Report No.047/2021
Client Name:	AECOM Limited
Document Title:	A geoarchaeological hand auger survey at Keadby 3 Low Carbon Gas Power Station, Lincolnshire
Issue/Version Number:	V2
Grid Reference:	SE 80761 11011 and SE 81979 12069
Planning Reference:	EN010114
TPA Site Code:	KAS
Report No.	047/2021

Disclaimer

This Report has been prepared solely for the person/party which commissioned it and for the specifically titled project or named part thereof referred to in the Report. The Report should not be relied upon or used for any other project by the commissioning person/party without first obtaining independent verification as to its suitability for such other project, and obtaining the prior written approval of York Archaeological Trust for Excavation and Research Limited ("YAT") (trading as Trent & Peak Archaeology) YAT accepts no responsibility or liability for the consequences of this Report being relied upon or used for any purpose other than the purpose for which it was specifically commissioned. Nobody is entitled to rely upon this Report other than the person/party which commissioned it. YAT accepts no responsibility or liability for any use of or reliance upon this Report by anybody other than the commissioning person/party.

Abstract

This report presents the results of a geoarchaeological hand auger survey carried out by Trent and Peak Archaeology at Keadby 3 Low Carbon Gas Power Station, Keadby, Lincolnshire. The fieldwork was commissioned by AECOM Limited in support of Development Consent Order for further development on the Keadby Power Station site.

The auger survey was carried out across two areas, Area1 in Keadby Common and Area 2 a parcel of arable farmland to the south west of the Common. The hand auger cores were able to record the upper sequence of organic silts/peat and overlying warp deposits. The cores were unable to fully investigate the underlying sands due to the compact nature of the sediment.

The resulting deposit model has demonstrated undulations in the surface of the sands across both areas with isolated pockets of deeper organic accumulation recorded in hollows in the sand surface. The overlying organics are likely to represent encroaching floodplain which may have developed at the site after the Iron Age. These deposits were for the most part highly desiccated and palaeoenvironmental remains are suggested to have a higher potential for survival in areas of deeper accumulation, i.e below 1.00mbgl.

The site also has the potential to preserve possible pre-Iron Age landsurfaces below the organic and warp deposits. In addition the sands are likely to have been substantially reworked and may also mask earlier remains. Further work is required to better understand the potential for the site to preserve archaeological remains both on the surface of and within the sand unit.

Contents

1.	INTRODUCTION	1
1.1.	Site Background	1
1.2	Geology and Topography	1
1.3	Planning Background	2
1.4	Scope of Report	3
2.	GEOARCHAEOLOGICAL BACKGROUND	3
2.1	Introduction	3
2.2	Previous investigations	3
2.3	Archaeological context	6
2.4	Project Aims and Objectives	8
3.	GEOARCHAEOLOGICAL METHODOLOGY	9
3.1	Fieldwork Methodology	9
3.2	Deposit model	9
3.3	Fieldwork constraints	9
3.4	Archive1	0
4.	RESULTS 1	11
4.1.	Lithology1	11
4.2	Deposit model 1	14
5.	DISCUSSION AND CONCLUSIONS 1	6
5.1	Overview of lithological sequence1	6
5.2	Deposit survival and existing impacts 1	6
5.3	Discussion of deposits 1	17
5.4	Potential impact on deposits 2	20
5.5	Consideration of research aims 2	20
5.6	Conclusions	21

Bibliography Acknowledgements

Appendix 1: Troels-Smith system of sediment classification table Appendix 2: Core logs

FIGURES

Figure 01: Location of the site and Areas 1 and 2

Figure 02: Modelled surface showing the top of fine sand (m OD) in Areas 1 and 2

Figure 03: Modelled surface showing thickness of peat deposits (m) and fence diagram for deposits in Area 1

Figure 04: Modelled surface showing thickness of peat deposits (m) and fence diagram for deposits in Area 2

Figure 05: Previous Radiocarbon Age Determination Locations (Headland 2013 and Headland 2018) in relation to Areas 1 and 2)

TABLES

Table 1: Quantification of site paper archive

Table 2: Summary of Area 1 auger locations

Table 4: Previously dated deposits from the environs of the site (Headland 2013 and 2018)

Table 5: Estimated / anticipated ages of peat deposits observed in Area 1 and 2 based on previous work

PLATES

Cover photo: Area 2 facing south

1. INTRODUCTION

1.1. Site Background

- 1.1.1 Trent and Peak Archaeology were commissioned by AECOM on behalf of SSE Generation Ltd to undertake a geoarchaeological hand auger survey at Keadby 3 Low Carbon Gas Power Station on land in the vicinity of the existing Keadby 1 power station (Figure 1, NGR SE 80761 11011 and SE 81979 12069).
- 1.1.2 The main power station site has been subject to several phases of archaeological evaluation, archaeological monitoring, auger survey and palaeoenvironmental assessment (Headland 2012-2019; PCA 2015-2016). In addition a desk based assessment was also produced (John Samuels 2003).
- 1.1.3 The areas of investigation that comprise Keadby 3 include a large open field alongside the main access road to the power station and a smaller field on Keadby Common (Figure 1).

1.2. Geology and Topography

- 1.2.1. The site is located 5km to the west of Scunthorpe adjacent to the village of Keadby. The Keadby 1 Power Station was built on the site of a former coal fired power station which was operational between 1952 and 1984. The Keadby 1 Power Station is a gas fired power station, commissioned in 1996.
- 1.2.2. Area 1 is located on Keadby Common, immediately to the west of the Keadby Power Station sub-station. It lies 0.36km south of the substantial Eastoft Moors Drain and 0.56km north of the Stainforth and Keadby Canal and associated North and South drains. It is bounded to the north, west and east by large drains. The land immediately to the south is artificially raised relating to recent works associated with the development of Keadby 2. A large stockpile of material is located immediately to the west and south-west, relating to the demolition works of the former coal power station. To the north, beyond the drains, lies open fields as well as a portion of the Keadby wind turbines.
- 1.2.3. Area 2 is located across arable fields, separated by open field drains, immediately to the south of the Stainforth and Keadby Canal and associated soak drains. The main access road for Keadby 1 and 2 is located in the north of the area, running east-west. The Area is bounded to the west, south and east by additional arable fields. The Three Rivers system is located 0.70km to the south-east with the canalised River Torne and Hatfield Waste Drain being located 1.00km to the south-west, feeding in to the Three Rivers system.
- 1.2.4. The present ground surface in Area 1 ranges from ~0.55-0.80m OD and is relatively flat with little in the way of major surface undulations. Area 2 is situated at ~0.80-1.25m OD, with the lower lying land being located in the east of the area.
- 1.2.5. The underlying geology of both areas of the site is recorded by the British Geological Survey (BGS) as the Mercia Mudstone, a sedimentary bedrock formed in the Triassic (252-201.3 mya). This is overlain by the Sutton Sand

Formation which in turn is overlain by Holocene Alluvium, deriving from the River Trent, and Warp deposits.

1.2.6. The Sutton Sands are concentrated in an area between York and Lincoln and are characterised as aeolian in origin. These sands were originally deposited in the Devensian although no precise chronology exists with regards to the retreat of the Vale of York ice front (Bateman *et al.* 2015). However, organic sediments underlying the Sutton Sand Formation at Sutton on the Forest, some 40km northeast of the site, have been dated to 12,879 +/- 168 cal yr BP indicating that the ice sheet front must have retreated to the north of this location by the late Devensian (Bateman *et al.* 2015). In places the sands are up to 7m thick and are likely to have been extensively reworked in the Holocene.

1.3. Planning Background

- 1.3.1. The Proposed Development Site is located approximately 5km to the west of the town of Scunthorpe and adjacent to the village of Keadby. The Proposed Development Site is located adjacent to and within the existing Keadby 1 Power Station site. Keadby 1 was built on the site of a former coal fired power station which was operational between 1952 and 1984. The Keadby 1 Power Station is a gas fired power station, commissioned in 1996.
- 1.3.2. Adjacent to the west of Keadby 1 Power Station is Keadby 2 Power Station; a 910MW CCGT power station currently under construction, following the grant of a variation to an existing Section 36 consent in 2016. Construction by the Applicant's Engineering, Procurement and Construction (EPC) contractor Siemens Energy commenced in April 2019 and is ongoing; expected completion is by quarter 1 (Q1), 2022.
- 1.3.3. The Proposed Development Site is located within the administrative boundary of North Lincolnshire Council (a unitary authority) and is bounded to the south by the A18, to the east by the River Trent, to the west by the former Keadby Ash Tip which includes historical landfill, and to the north by agricultural fields in which the Keadby Windfarm is located (three wind turbines located immediately north of the Proposed Development Site boundary).
- 1.3.4. The Proposed Development will comprise the following elements:
 - Proposed PCC Site: this is approximately rectangular in area and would include the proposed generating station comprising turbines, boilers, exhaust gas treatment, stack(s) and ancillary plant as well as cooling infrastructure, electricity export infrastructure;
 - Water Connection Corridors: this includes corridors following the routes of the intake (south – referred to as the 'River Water Abstraction Option') and outfall (north – referred to as the 'Water Discharge Corridor') pipework currently associated with the cooling operations for the Keadby 1 Power Station, and which are proposed to also be utilised for Keadby 2 Power Station;
 - Electrical Connection Area to National Grid 400 kilovolt (kV) substation;

- Emergency Vehicle Access Road and Potential Electrical Connection to 132kV Substation;
- Waterborne Transport Offloading Area: that would be available should waterborne transport of components via the River Trent be considered as an option by contractors to deliver abnormal indivisible loads;
- · Additional Abnormal Indivisible Load Route;
- Indicative Construction Laydown Areas: a number of indicative construction laydown areas which may be provided in different parts of the Proposed Development Site are proposed; and
- Land within the Keadby Power Station site: which includes land associated with Keadby 2 Power Station and Keadby 1 Power Station is also included for the purposes of facilitating connections to the Proposed Development for gas, electricity, water and other necessary infrastructure.
- 1.3.5. A Cultural Heritage Desk Based Assessment of the known historic and archaeological resource in and surrounding the site has been undertaken (AECOM 2020a). A WSI was produced by AECOM in consultation with the Historic Environment Officer for North Lincolnshire Council (NLC) (AECOM 2020b).
- 1.3.6. The archaeological works specified within the WSI (hand auger survey and geophysical survey) will contribute to the understanding of the nature of the archaeological resource within the Proposed Development Site. The work detailed in the WSI together with the desk-based assessment will inform the existing baseline information gathered for an Environmental Statement (ES) to accompany a Development Consent Order (DCO) Application in 2021.

1.4. Scope of Report

1.4.1. This report presents the result of a hand auger survey carried out in Area 1 and 2 in February 2021. The fieldwork and report was undertaken by Tom Keyworth (TPA Geoarchaeology Project Officer) and Kristina Krawiec (TPA Geoarchaeology Project Manager).

2. GEOARCHAEOLOGICAL BACKGROUND

2.1. Introduction

2.1.1. The following background is taken form the WSI (AECOM 2020b) and previous studies carried out by Headland (2012; 2018).

2.2. Previous investigations

2.2.1. Keadby is located on the eastern border of the Isle of Axholme area, part of the Humberhead Levels which form a vast drainage catchment area where

major rivers drain one fifth of England and enter the River Humber before flowing eastwards into the North Sea (English Nature National Character Area (NCA) 39 2015) The Keadby drainage catchment area has a long history of water management and drainage and there are numerous drains and ditches.

- 2.2.2. In the post-glacial period, as Lake Humber gradually silted up, the Isle of Axholme was an area of meandering incised rivers, bounded by comparatively dry land. The development and periodic abandonment of channels and the adoption of others, created localised areas of swamp and peat, which can be recognised in a number of palaeochannels.
- 2.2.3. A considerable amount of geoarchaeological study has been conducted both within the Proposed Development Site and within its vicinity, including in advance of the Keadby Wind Farm and Keadby 2 Power Station developments. The data from these studies has demonstrated the presence of peat deposits throughout the area, with peat deposition occurring from 11,423–11,196 cal BC through to the Iron Age (350–54 cal BC).
- 2.2.4. As part of the Keadby 2 Power Station development, the following programme of archaeological investigations occurred between 2018 and 2019:
 - excavation of eight trial trenches located within the footprint of the proposed Keadby 2 Power Station site;
 - drilling of 23 geoarchaeological boreholes; and
 - an archaeological watching brief (Headland Archaeology 2018a; 2018b; 2019).
- 2.2.5. The generalised stratigraphic sequence recorded in the trial trenches comprised topsoil overlying modern deposits (made ground) (between 0.3m and 1.8m thick) generated through the demolition of the former Keadby coal fired power station. This in turn, overlay alluvium (up to 0.6m thick) and peat deposits (Headland Archaeology 2018a).
- 2.2.6. The geoarchaeological boreholes recorded 'a tripartite natural sequence beneath the modern made ground. This consisted of stiff greenish-grey silty clay (1), overlying black to reddish-brown peat (2), overlying greenish-grey to pinkish-grey fine sandy silt, grading downwards into brown and grey medium to coarse sands (3)' (Headland Archaeology 2018a, 5). Peat was widespread across Keadby 2 Power Station investigation site, ranging from 0.15m to 0.64m thick (Headland Archaeology 2018a, 12). The peat was also recorded as 'tripartite' in character in many of the cores, with the upper and lower horizon recorded as 'silty peat' or 'peaty silt', and the middle horizon described as 'wood or reed peat' (ibid.).
- 2.2.7. Of the peat samples recovered from the geoarchaeological boreholes, three sub-samples from a single core were selected for further palaeoenvironmental analysis (Borehole 27: 1.30m 1.35m, 1.46-1.50m and 1.56m-1.60m below ground level). In addition to this, two pieces of 'woody material' were selected from the sub-samples for radiocarbon dating (Headland Archaeology 2018b, 2). The dating and assessment provided the following results:
 - the radiocarbon dates from remains from the basal part of the peat indicated formation during the Late Neolithic to Early Bronze Age. A

further 0.3m thickness of peat overlay this, suggesting that waterlogged conditions continued through the Bronze Age (Headland Archaeology 2018b, 6);

- macroscopic plant remains suggest the basal sediments were laid down in a woodland carr environment with occasional fragments of larch/ spruce/ pine charcoal (ibid.);
- the macroscopic plant remains in the middle and upper sediments were dominated by fibrous stem fragments 'suggesting the woodland carr developed into an open rush/ sedge/ reed marshland environment with little indication of woodland in situ or in the near vicinity' (ibid.); and
- the pollen data supported the macroscopic plant evidence, indicating a fen woodland that became more open and reed-dominated (ibid), demonstrating marine transgressions and a change in environmental conditions.
- 2.2.8. The Keadby Wind Farm works extended north, south and west of the Proposed Development Site, covering an area approximately 4.5km by 3km. The programme of archaeological investigation carried out to inform and support the Keadby Windfarm development comprised an initial auger survey, targeted trial trenching and coring survey, an auger/ trial trenching evaluation of 'Compound 3' (located on the south side of the Stainforth and Keadby Canal) and a final phase of watching brief and excavation (Headland 2012a; 2012b; 2013; 2014).
- 2.2.9. The initial auger survey was organised along twelve transects and generated a 2D contour map of peat thicknesses, as well as demonstrating the presence of two main episodes of peat formation (at 0.8m to 1m AOD and -0.25m to 2.1m AOD) (Headland 2012a, 5).
- 2.2.10. Core samples were taken from two cores during the second phase of investigations in advance of the Keadby Wind Farm: Core 1, located approximately 1.2km north of the Proposed Development Site; and Core 2, located approximately 1km south of the Proposed Development Site. The samples from these cores indicated four separate periods of peat formation (Headland 2013). These were as follows:
 - Peat 1. Only identified within Core 1, the peat was recorded at -3.88m to -4.20m OD. Dating from this phase of peat deposition, from the top and bottom of the deposit, indicated a date range between 11,423–11,196 cal BC and 9,660–9,304BC. The early date indicates that peat began to develop almost immediately after the Younger Dryas period. The presence of juniper and dwarf birch indicates sub-Arctic conditions, these being among the first trees to have colonised Britain following the end of the last glacial period;
 - Peat 2. Only identified in Core 1 this peat horizon was recorded at -3.12 to -3.52m OD. The peat was not scientifically dated but its stratigraphic position indicates a Mesolithic date (before 4,000BC);
 - Peat 3. This horizon was identified in both cores and based on the previous auger survey this peat accretion was almost ubiquitous across the investigation area. Within Core 1, the peat formation occurred at -

0.82m to -2.47m OD and in Core 2, at 0.25 to -2.03m OD. The dates from the two cores are very similar, forming at 3341-3013 cal BC in Core 1 and at 3339–3029 cal BC in Core 2. The cessation of this peat formation was recorded as occurring in the Iron Age between 537–387 cal BC (Core 1) and 350–54 cal BC (Core 2). This particular horizon has yielded large wood fragments, of types that indicated a landscape of carr woodland throughout much of the Neolithic, Bronze Age, and Iron Age periods; and

- Peat 4. A thin layer of silty peat recorded during the previous auger survey that likely developed after the Iron Age.
- 2.2.11. The following sequence was recorded within Core 2:
 - Peat deposit (lowest level) at 2.58 to 2.59m bgl, developed at 3339-3029 cal BC (Neolithic);
 - Peat deposit (upper level) at 2.33 to 2.34m bgl, developed at 2865-2573 cal BC (Neolithic), and containing wood fragments from a carr woodland environment;
 - Overlain by a deposit of silty clay with peat inclusions, indicating flooding episodes;
 - Overlain by peat deposit (lowest level) at 1.70 to 1.71m bgl developed at 2027–1881 cal BC (Early Bronze Age) and containing large wood fragments indicating the re-establishment of carr woodland;
 - Peat deposit (upper level) at 0.84 to 0.85m bgl developed 350–54 cal BC (Iron Age); and
 - Overlain by a 0.62m thick deposit of silty clay with peat inclusions, indicating flooding episodes, possibly occurring between Roman to medieval periods.
- 2.2.12. In addition to this, a further auger survey was conducted in the location of Compound 3 of Keadby Wind Farm. A total of eight augers were drilled, revealing the presence of wood peat, ranging between 0.22m and 2.43m thick, from 0.72m bgl. Wood fragments from the basal peat were identified as alder and birch, indicative of wet woodland. The presence of an oak stump in the middle of the peat layer suggest the peatland was becoming more terrestrial (Headland 2012c, 5). No scientific dating was conducted on the auger samples.

2.3 Archaeological context

Prehistoric

- 2.3.1. The majority of known evidence for prehistoric activity is located on the higher ground ridges of Crowle and Belton, where remains are buried beneath post-medieval warping sediments and earlier periods of alluviation. Baseline assessment has demonstrated that peat deposition occurred in the late Neolithic period, and there is potential for a buried pre-Neolithic land surface to exist beneath this.
- 2.3.2. The wetland marsh environment from the Late Neolithic onwards, would be attractive to populations, yielding rich resources (peat, fish, game, plants,

wood). The proximity of the area to known sites of prehistoric settlement (such as at Crowle) mean that that this wetland environment would have been easily accessible during these periods. Evidence of Bronze Age activity in the wider area includes a hoard of socketed axes and a Bronze Age shield, and a possible one-tree log boat identified near White House Farm. The latter was found within a peat layer and demonstrates the preservation potential of such deposits.

Roman (43AD – 410)

2.3.3. The recovery of a Romano-British 'bog body', dated to the late 3rd to 4th centuries c. 270m north of the Proposed Development Site demonstrates the level of preservation that peat can provide, as well as demonstrating Roman activity within the area. Roman occupation is known to have occurred at Crowle, which may have functioned as a trading post at this time. A possible small Romano-British settlement is thought to exist within the eastern limits of the Proposed Development Site, adjacent to the Water Connection Corridor, based on a recorded pottery scatter. This settlement may be associated with occupation of an eyot (island) during this period.

Early medieval (450 – 1066)

2.3.4. The place names Keadby and Gunness suggest Viking derivation, with Keadby thought to mean 'Kaeti or keti's farmstead' and Gunness to mean 'Gunni's headland' (Cameron 1998, 54 and 57). If settlements existed here at this time, they may have been connected to retreating positions of the Danes, mentioned in 11th century Anglo-Saxon chronicles as Danes taking shelter in the marshlands of Axholme in order to use its sea and river connections (Le Quesne 2015, p.11).

Medieval (410 – 1540 AD)

2.3.5. Throughout the medieval period, the Proposed Development Site is likely to have remained marshland, used as summer pasture and exploited for the rich fishing and hunting resources that such an environment provides. To date however, no medieval remains have been identified within the Proposed Development Site and the only remains recovered in the vicinity of the Proposed Development Site is a lead spindlewhorl, found in a garden in Gunness.

Post-medieval Period (1540 – 1900AD)

2.3.6. The post-medieval period saw dramatic and systematic drainage programmes on the Isle of Axholme, converting areas of marshland and moorland into organised, drained and fertile enclosures to create an entirely new landscape. The work comprised cutting of new drains, constructions of dykes, re-directing the flow of the island's bounding rivers, and warping systems. The ambitious programme began in the 1620s, designed by Cornelius Vermuyden, who had been commissioned by Charles I to drain the land.

Modern Period (1914 – present)

2.3.7. The first power station was constructed within the Proposed Development Site and opened in 1952. The power station was coal fired and comprised a coal store, compounds, chimneys, conveyors, turbine house, boiler house and further features. The power station operated until 1984 and was replaced in 1996 by Keadby 1 Power Station, a gas fired power station constructed on the main footprint of the previous station in the 1990s.

2.4 **Project Aims and Objectives**

- 2.4.1. The overarching aim of the project was:
 - To provide further information on the archaeological resource within the Proposed Development Site to further inform baseline conditions for the DCO Application.
- 2.4.2. The specific aims of the geoarchaeological survey were:
 - to identify the presence of peat deposits across the Proposed Development Site;
 - to assess the geoarchaeological potential of the peat deposits;
 - to produce a geoarchaeological deposit model of the Proposed Development Site to detail the sequence and distribution of sub-surface deposits across the area;
 - to determine the location, nature, extent, date, condition, state of preservation, significance and complexity of geoarchaeological and palaeoenvironmental sequences;
 - to provide information, within the limitations of the investigation, regarding the palaeoenvironment and the palaeo-topography and place the results into the context of the wider landscape; and
 - to aid further evaluation and understanding of the archaeological potential within the Proposed Development Site.
- 2.4.3. A further objective was to assess the potential that the site has to address research questions outlined in regional research resource assessments and research frameworks for the East Midlands (Cooper 2006; Knight, Vyner & Allen 2012) and relevant elements for Yorkshire and the Humber (Roskams and Whyman 2005; 2007), as well as thematic and period-specific reviews such as the prehistoric period (HE 2010), the Palaeolithic and Mesolithic periods (Pettitt, Gamble & Last (eds) 2008; Prehistoric Society 1999), the Bronze Age (Roberts, 2008), the Iron Age (Haselgrove et al., 2001) the Roman period (James and Millett (eds) 2001; EH 2012; Van der Veen et al. 2007), environmental archaeology and wetland heritage (EH 2011; EH 2012; EH 2012) and Historic England's Introductions to Heritage Assets and Selection Guides.

3. GEOARCHAEOLOGICAL METHODOLOGY

3.1 Fieldwork Methodology

- 3.1.1 All elements of the investigation were carried out to an acceptable archaeological standard in accordance with the relevant Chartered Institute for Archaeologists standards and guidance (CIfA 2020a).
- 3.1.2 The fieldwork was carried out with reference to *Historic England Guidelines for Environmental Archaeology* and *Geoarchaeology* (HE 2011 and HE 2015b).
- 3.1.3 The location of each core was set out and recorded using GNSS.
- 3.1.4 The survey was carried out with an Eikjelcamp gouge auger fitted with an Edelman head and cores were undertaken until refusal. The deposits were recorded by a geoarchaeologist using the Troels-Smith (1955) system of sediment classification (Appendix 1). The scheme breaks down a sediment sample into four main components and allows the inclusion of extra components that are also present, but that are not dominant. Key physical properties of the sediment layers are darkness (Da), stratification (St), elasticity (El), dryness of the sediment (Sicc) and the sharpness of the upper sediment boundary (UB). A summary of the sedimentary and physical properties classified by Troels-Smith (1955) and a stratigraphic breakdown of the deposits is provided in Appendix 2.

3.2 Deposit model

- 3.2.1. A deposit model was constructed using the results of the purposive window samples, existing British Geological Survey records and any other GI works undertaken at the site. The modelling was undertaken with reference to *Historic England Guidance for Deposit Modelling and Archaeology* (2020). The data was entered into Rockworks in order to generate 3-D solid models, fence diagrams and cross sections. In addition, surfaces were created to aid visualisation using ArcGIS incorporating available lidar data as digital terrain models with multi-directional hillshading and/or local relief modelling used to aid interpretation.
- 3.2.2. The data is archived in an excel spreadsheet.

3.3 Fieldwork constraints

- 3.3.1 The gouge chamber was initially used for the survey but it became apparent that this was unsuitable due to the shallowness of the overlying warp deposits and the compact nature of the underlying sands.
- 3.3.2 Only one hand auger location was unable to be drilled: AG53 located to the north of Area 2, due to the presence of a spoilheap. Exclusion zones, relating to wind turbines, in Area 1 in the north-east corner meant that the full extent of the field was not subject to hand auger survey.
- 3.3.3 Attempts at drilling past the fine-grained sand immediately underlying any peaty deposits observed was unsuccessful due to the collapsing of the holes as a result of rapid ground water ingress

3.4 Archive

3.4.1. The site archive is currently held at the offices of TPA. The contents of the archive are tabulated below (Table 1).

Borehole/test pit digital file	excel spreadsheet
Section sheets	0
Plans sheets	0
Colour photographs	0
B&W photos	0
Digital photos	0
Sample register	0
Drawing register	0
Watching brief forms	0
Trench Record forms	0

Table 1: Quantification of site paper archive

4. RESULTS

4.1. Lithology

Area 1 Keadby Common

4.1.1. A total of 21 hand auger boreholes (AG01-22; Figures 02 and 03) were drilled along seven north-south transects laid out on a 50.00m grid spacing. The coordinates, elevations and total depths attained for the hand auger cores are outlined in Table 2. In addition, the depth/elevation at which the top of the peat deposits were recorded is summarised, as well as the thickness of the organic silt / silt peat deposits. The top of the fine-grained sand immediately underlying the silt peat deposits, indicative of the early Holocene land surface, is also shown.

ID	Easting	Northing	Elevation (m OD)	Total Depth (m BGL)	Top of Peat (m BGL)	Top of Peat (m OD)	Peat Thickness (m)	Top of Sand (m BGL)	Top of Sand (m OD)
AG01	481869.91	412175.91	0.55	1.30	0.55	0.00	0.10	0.65	-0.10
AG02	481866.48	412126.57	0.43	1.20	-	-	0.00	0.65	-0.22
AG03	481862.83	412076.14	0.39	1.30	0.65	-0.27	0.15	0.80	-0.42
AG04	481859.11	412026.50	0.32	0.80	0.50	-0.18	0.30	-	-
AG05	481920.13	412172.91	0.47	1.30	0.55	-0.08	0.15	0.70	-0.23
AG06	481916.41	412122.33	0.49	1.30	0.70	-0.21	0.30	1.00	-0.51
AG07	481913.71	412071.61	0.60	1.20	0.70	-0.10	0.10	0.80	-0.20
AG08	481910.07	412021.90	0.44	1.20	0.65	-0.21	0.20	0.85	-0.41
AG09	481970.15	412168.84	0.38	1.30	0.55	-0.17	0.25	0.80	-0.42
AG10	481966.56	412118.36	0.56	1.20	0.80	-0.24	0.20	1.00	-0.44
AG11	481963.36	412069.35	0.49	1.30	0.80	-0.31	0.10	0.90	-0.41
AG12	481959.22	412019.11	0.65	1.80	0.70	-0.05	0.10	0.80	-0.15
AG13	482017.00	412115.54	0.38	1.20	0.55	-0.17	0.10	0.65	-0.27
AG14	482012.91	412064.71	0.74	1.20	0.60	0.14	0.05	0.65	0.19
AG15	482009.79	412015.71	0.75	1.20	-	-	0.00	0.55	0.20
AG16	482063.45	412061.95	0.76	1.20	0.40	0.36	0.13	0.53	0.23
AG17	482060.63	412012.41	0.72	1.20	-		0.00	0.55	0.17
AG18	482113.96	412057.92	0.89	1.20	0.60	0.29	0.02	0.62	0.27
AG19	482110.36	412007.92	0.85	1.20	0.55	0.30	0.03	0.58	0.27
AG20	482163.06	412055.21	0.82	1.20	0.50	0.32	0.05	0.55	0.27
AG21	482160.83	412005.24	1.03	0.75	0.70	0.33	0.05	0.75	0.28

4.1.2. The detailed core logs can be found in Appendix 2.

Table 2: Summary of Area 1 auger locations

4.1.3. The sequence recorded across Area 1 was consistent: fine buff to pale grey sand was overlain by waterlogged black-brown silty organic sand / silty peat / organic silt often with visible fibrous woody fragments. Where this organic material was present, the top of the underlying fine buff-pale grey sand was

immediately overlain by brown slightly organic sand, indicative of leached material from the overlying organic deposits.

- 4.1.4. Overlying the waterlogged organic material were fine-grained oxidised silts and clays representing alluvial material from overbank inundation events or deliberate warping activities (deliberate and purposive flooding of fields). The warp material was distinguished from the more homogenous and structureless oxidised alluvium by the presence of fine laminations, indicative of discrete warping 'events'. The oxidised alluvium / warp deposits were sealed by a mid-dark brown silt clay topsoil.
- 4.1.5. The organic silt / silty peat was recorded in all auger hole locations with the exception of AG02, AG15 and AG17 (Figure 2). Upon reaching the underlying fine sand at depths between 0.50-1.00m BGL, the rapid ingress of groundwater meant that further progress was inhibited as the auger holes collapsed.

Area 2

4.1.6. A total of 60 hand auger cores (AG22-52 and 54-82; Figures 02 and 04) were drilled along ten north-south transects laid out on a 50.00m grid spacing. The coordinates, elevations and total depths attained for the hand auger boreholes are outlined in Table 3 below. In addition, the depth/elevation at which the top of the peat deposits was observed is summarised, as well as the thickness of the organic silt / silt peat deposits. The top of the fine-grained sand immediately underlying the silt peat deposits, indicative of the early Holocene land surface, is also shown.

ID	Easting	Northing	Elevation (m OD)	Total Depth (m BGL)	Top of Peat (m BGL)	Top of Peat (m OD)	Peat Thickness (m)	Top of Sand (m BGL)	Top of Sand (m OD)
AG22	480541.29	411096.85	1.23	1.10	0.60	0.63	0.13	0.73	0.50
AG23	480531.97	411045.86	1.30	1.10	0.65	0.65	0.11	0.76	0.54
AG24	480523.64	410996.68	1.20	1.10	-	-	0.00	0.76	0.44
AG25	480515.28	410949.08	1.08	1.10	-	-	0.00	0.48	0.60
AG26	480591.16	411088.43	1.24	1.10	0.38	0.86	0.24	0.62	0.62
AG27	480581.19	411037.49	1.26	1.10	-	-	0.00	0.55	0.71
AG28	480572.97	410990.00	1.34	1.10	0.54	0.80	0.04	0.58	0.76
AG29	480564.50	410939.15	1.07	1.10	0.38	0.69	0.04	0.42	0.65
AG30	480647.12	411128.47	1.16	1.55	0.40	0.76	0.05	0.45	0.71
AG31	480637.89	411079.33	1.19	1.38	0.40	0.79	0.27	0.67	0.52
AG32	480630.45	411030.01	1.24	1.10	-	-	0.00	0.94	0.30
AG33	480621.22	410980.84	1.24	1.10	0.55	0.69	0.20	0.75	0.49
AG34	480614.64	410930.76	1.29	1.10	0.50	0.79	0.07	0.57	0.72
AG35	480726.40	411110.18	1.08	1.10	0.30	0.78	0.10	0.40	0.68
AG36	480718.04	411060.85	1.11	1.20	0.45	0.66	0.15	0.60	0.51
AG37	480709.70	411012.82	1.19	1.10	0.42	0.77	0.11	0.53	0.66

4.1.7. The detailed core logs can be found in Appendix 2.

Trent and Peak Archaeology Keadby 3 Low Carbon Gas Power Station, Lincolnshire Report No.047/2021

ID	Easting	Northing	Flevation	Total Depth (m	Top of Peat (m	Top of Peat (m	Peat Thickness	Top of Sand (m	Top of Sand (m
			(m OD)	BGL)	BGL)	OD)	(m)	BGL)	OD)
AG38	480701.05	410963.64	1.21	1.20	0.52	0.69	0.08	0.60	0.61
AG39	480692.36	410914.10	1.46	1.20	0.70	0.76	0.17	0.87	0.59
AG40	480782.00	411194.03	1.27	1.00	-	-	0.00	0.58	0.69
AG41	480775.66	411102.43	1.18	1.10	-	-	0.00	0.30	0.88
AG42	480767.94	411052.39	1.17	0.40	-	-	0.00	0.25	0.92
AG43	480758.81	411003.79	1.23	1.10	0.64	0.59	0.21	0.85	0.38
AG44	480750.20	410955.50	1.21	1.20	0.38	0.83	0.10	0.48	0.73
AG45	480742.95	410905.49	1.33	1.20	0.64	0.69	0.04	0.68	0.65
AG46	480830.46	411202.64	1.31	0.90	-	-	0.00	0.57	0.74
AG47	480832.34	411142.65	1.21	1.10	-	-	0.00	0.60	0.61
AG48	480824.23	411093.49	1.26	1.20	0.30	0.96	0.25	0.55	0.71
AG49	480816.47	411045.20	1.28	1.20	-	-	0.00	0.43	0.85
AG50	480808.27	410996.60	1.22	1.10	-	-	0.00	0.85	0.37
AG51	480799.65	410947.39	1.34	1.10	0.60	0.74	0.15	0.75	0.59
AG52	480791.44	410896.82	1.26	1.10	0.60	0.66	0.10	0.70	0.56
AG54	480882.89	411133.97	1.21	1.20	0.84	0.37	0.16	1.00	0.21
AG55	480874.19	411085.29	1.28	1.50	0.95	0.33	0.25	1.20	0.08
AG56	480866.09	411037.09	1.27	1.30	0.85	0.42	0.35	1.20	0.07
AG57	480856.94	410986.97	1.28	1.10	0.55	0.73	0.10	0.65	0.63
AG58	480847.94	410937.90	1.35	1.20	0.65	0.70	0.19	0.84	0.51
AG59	480839.70	410888.77	1.33	1.50	1.25	0.08	0.15	1.40	-0.07
AG60	480955.74	411227.62	1.15	1.00	0.50	0.65	0.10	0.60	0.55
AG61	480939.38	411126.67	1.31	1.10	-	-	0.00	0.60	0.71
AG62	480932.53	411076.08	1.33	1.10	-	-	0.00	0.60	0.73
AG63	480926.12	411027.45	1.24	1.20	0.60	0.64	0.10	0.70	0.54
AG64	480918.38	410978.37	1.26	1.30	0.90	0.36	0.10	1.00	0.26
AG65	480912.48	410928.27	1.31	1.40	1.18	0.13	0.12	1.30	0.01
AG66	480905.65	410879.61	1.18	1.60	1.35	-0.17	0.05	1.40	-0.22
AG67	481003.52	411237.27	1.35	2.00	0.76	0.59	0.08	1.40	-0.05
AG68	480993.53	411168.51	1.15	1.20	0.50	0.65	0.25	0.75	0.40
AG69	480987.99	411118.95	1.19	1.20	0.50	0.69	0.25	0.75	0.44
AG70	480981.65	411069.83	1.20	1.00	-	-	0.00	0.35	0.85
AG71	480976.15	411021.14	0.93	1.20	-	-	0.00	0.35	0.58
AG72	480969.35	410971.52	1.34	1.45	1.20	0.14	0.05	1.25	0.09
AG73	480962.96	410921.44	1.24	2.00	1.65	-0.41	0.10	1.75	-0.51
AG74	480957.13	410871.42	1.14	1.55	1.00	0.14	0.20	1.20	-0.06
AG75	481053.54	411248.14	1.53	1.20	-	-	0.00	0.71	0.82
AG76	481043.54	411161.66	1.30	1.20	-	-	0.00	0.40	0.90
AG77	481037.13	411113.43	0.97	1.30	0.75	0.22	0.05	0.80	0.17

Trent and Peak Archaeology Keadby 3 Low Carbon Gas Power Station, Lincolnshire Report No.047/2021

ID	Easting	Northing	Elevation (m OD)	Total Depth (m BGL)	Top of Peat (m BGL)	Top of Peat (m OD)	Peat Thickness (m)	Top of Sand (m BGL)	Top of Sand (m OD)
AG78	481030.82	411063.84	0.82	1.20	0.45	0.37	0.05	0.50	0.32
AG79	481024.85	411013.31	1.14	1.20	0.60	0.54	0.15	0.75	0.39
AG80	481018.49	410965.07	1.32	1.20	0.90	0.42	0.10	1.00	0.32
AG81	481012.55	410915.95	1.26	1.50	0.95	0.31	0.10	1.05	0.21
AG82	481006.66	410865.51	1.33	1.30	0.75	0.58	0.05	0.80	0.53

Table 3	Summarv	of Area	2 auger	locations
i abie J.	Summary	U Alea	z augei	1004110113

- 4.1.8. The sequence recorded across Area 1 was consistent: fine buff to pale grey sand. In contrast to Area 1, the organic deposits observed in Area 2 overlying the sand were more humified. The material in Area 2 was more consistently a black-grey organic silt or sand. Where this organic material was present, the top of the underlying fine buff / pale grey sand was immediately overlain by brown slightly organic sand, indicative of leached material from the overlying organic deposits.
- 4.1.9. As with Area 1, the deposits overlying the waterlogged organic material in Area 2 comprised fine-grained oxidised silts and clays representing alluvial material from overbank inundation events or deliberate warping activities (deliberate and purposive flooding of fields). The warp material was distinguished from the more homogenous and structureless oxidised alluvium by the presence of fine laminations, indicative of discrete warping 'events'. The oxidised alluvium / warp deposits were sealed by a mid-dark brown silt clay topsoil.
- 4.1.10. The organic silt / silt peat was recorded in the majority of auger hole locations with the exception of AG24-25, 27, 32, 40-42, 46-47, 49-50, 61-62, 70-71 and 75-76, a total of 17 out of the 60 auger locations (Figure 02). Upon reaching the underlying fine sand at depths between 0.25-1.40m BGL, the rapid ingress of groundwater meant that further progress was inhibited as the auger holes collapsed.

4.2 Deposit model

4.2.1. The data from the auger survey was entered into a Rockworks database and 3-dimensional fence diagrams were produced (Figure 3 and 4). In addition surfaces were produces in QGIS (Figure 5).

Area 1

4.2.2. The deposit model of Area 1 demonstrates the variation in the surface of the sand with two lower lying areas in the western half of the area, centred on AG6 and AG04 (Figure 2). The difference between the depressions and the higher ground is slight, c. 70cm, and was expressed by areas of standing water observed in the surface of the field. The organic deposits infilling these depressions were less well-humified and more waterlogged that those recorded on the higher areas.

4.2.3. The thickness of peat has also been modelled so that comparison with the proposed geophysical survey can be undertaken (Figure 3). Again these thicker areas of accumulation related to the depressions in the surface of the sand and represent localised waterlogging.

Area 2

- 4.2.4. The modelled surface of the sand again shows small changes in elevation across the area which illustrate the subtle undulations in the underlying deposits (Figure 2). There are two areas of deeper accumulation, one centred on AG73 and one centred on AG67 (Figure 2). Again the organics within this area were more like true peats and sit within localised depressions in the sand surface.
- 4.2.5. The modelled deposits show the warp deposits are thicker in the south east of the area and are beginning to pinch-out to the north (Figure 4). The organic deposits also varying in thickness across the area likely reflecting localised waterlogged conditions.
- 4.2.6. The modelling has demonstrated an absence of channels within the two areas and that the organic accumulation is as a result of the undulations in the soft sand surface.

5. DISCUSSION AND CONCLUSIONS

5.1 Overview of lithological sequence

- 5.1.1. The auger survey has demonstrated a rather simple sequence of deposits in both areas of the site that was largely consistent. The deposits recorded have been modelled and projected as fence diagrams for both Area 1 (Figure 03) and Area 2 (Figure 04).
- 5.1.2. Both the accumulation of organic deposits immediately overlying the fine sand and the oxidised alluvium/warp deposits are visibly more substantial where the elevation of the sub-surface is lowest, as represented by undulations, hollows and depressions in the sand. This sub-surface topography was also expressed on the ground surface level in both Areas 1 and 2, but more visibly so in Area 1.
- 5.1.3. The organic deposits overlying the sands were mainly well humified and dry although within the deeper undulations in the subsurface topography the deposits were more consistently saturated and hence had a higher organic content.

5.2 Deposit survival and existing impacts

- 5.2.1. The deposits at both sites showed little sign of disturbance and no evidence of contamination. It was initially thought that Keadby Common was an area of former landfill but the auger survey has demonstrated an intact sediment sequence is preserved. The water table was encountered fairly consistently between 0.80-1.00m bgl across both areas.
- 5.2.2. The auger survey was unable to record the full extent of the sand deposits due to hole collapse. It is possible that the fine-grained nature of the sand would lend itself to reworking and the possibility that these sands mask deeper organic sediment cannot be ruled out.
- 5.2.3. For the most part the organic deposits overlying the sand were fairly dry and well humified. In Area 1 the sands were overlain by between 0.62-1.20m of organic and warp deposits and in Area 2 the sands were overlain by between 0.40-1.00m. It is suggested that deposits within the hollows and undulations of the sand surface, particularly those below 1.00mbgl, are likely to have been more consistently waterlogged and therefore may have a better preservation potential for palaeoenvironmental and organic archaeological remains. In addition these deposits may also mask former land surfaces which may preserve archaeological features and artefacts, i.e lithic scatters.
- 5.2.4. The overlying warp/alluvium was highly oxidised and dry across both areas and has a low palaeoenvironmental potential. In some areas this directly overlies the sand (Figures 3 and 4) and may mask archaeological deposits.

5.3 Discussion of deposits

Sutton sands/fluvial sand

- 5.3.1. The deposits encountered at the base of the sequence were characterised as fine sand (Figure 02). These sand deposits likely represent the fluvially reworked Sutton Sand Formation deposits mapped 2.8km west of Area 1 and 1.0km west of Area 2, at the western extreme of the floodplain edge. Isolated, topographically raised outcrops of mapped Sutton Sand Formation deposits have also been observed 0.90km east and 0.97km south-east of Area 2, the latter to the south of the Three Rivers system, as well as 0.70km north-west of Area 2 at Ealand Grange to the north of the Stainforth and Keadby Canal.
- 5.3.2. The Sutton Sand Formation has been shown to have accumulated at the end of the Devensian, after c. 12,879 +/- 168 cal yr BP between c. 10,700-9,950 years BP (Bateman et al 2015). These deposits are aeolian in origin and are prone to reworking which is likely to have occurred throughout the Holocene. This reworking is difficult to characterise in hand auger cores and test pitting and boreholes would be required to test this assumption. The areas lies at the edge of the Trent floodplain which is likely to add complexity to the issue of reworking. Work carried out at Flixborough, 5km north of Keadby, demonstrated reworking of the underlying sands from the Late Bronze Age to the end of the Roman period (McDonnell 2003).
- 5.3.3. The surface of the sand demonstrated topographic variation across both areas. The modelled sub-surface elevations of the fine sand recorded in the auger cores in Area 1, show a clear area of higher sub-surface elevation to the east (Figure 02 indicated by warm, red colour shading) whilst to the west there is a minor depression within the sand which is lower by 0.50-0.75m (indicated by cool, blue colour shading).
- 5.3.4. In Area 2 more variation can be seen, with slight depressions and hollows within the sand sub-surface visible across the area (Figure 02). These depressions and hollows are also the locations of the more substantial peat/organic silt accumulation (Figures 03 and 04) whilst the sand encountered at higher elevations correlated with areas either absent of peat or with very thin deposits. These slightly higher areas of outcropping sand have the potential to be locations for buried 'dryland' archaeological remains, given their advantageous relief within the historically marshy / waterlogged wider floodplain.

Organic deposits / Peat

- 5.3.5. Across both areas an organic deposit was recorded with varying degrees of humification. The deposits represent paludification of the edge of the floodplain and are likely to have been only seasonally wet. The undulations in the sand would have allowed deeper pockets of organics to form and to remain waterlogged for longer periods. The character of the vegetation is likely to have been areas of sedges with fringing floodplain alder carr surrounding small open pools.
- 5.3.6. The modelled thickness of the organic silt /peat in Area 1 are shown in Figure 03, with an average thickness of 0.17-0.34m across Area 1 and between 0.13-0.26m in Area 2. The deposits which have a less well humified organic content and are characterised more a true peat are largely confined to the west of the

area where the elevation of the fine sand deposits is lowest. These areas are likely to have been more consistently waterlogged. This is further emphasised by the presence of woody/rooty remains recorded in the surface of the peat in Area 1, indicating the drying out of the peat surface allowing non-wetland vegetation to colonise the area.

- 5.3.7. In Area 2 (Figure 04) the more extensive organic silt/sand/peat deposits are shown to correlate with the slight depressions and hollows within the underlying fine sands. This reflects the generally undulating nature of the sand surface which would have been represented as intermittent pools within the wider mosaic wetland of the floodplain edge.
- 5.3.8. In 2013 eight samples from two cores (Cores 1 and 2) were submitted by Headland Archaeology for radiocarbon age determination from substantial peat deposits. Core 1 was located 1.30km to the north of Area 1 (Keadby Common) with Core 2 located 0.68km to the south-east of the Area 2 (Headland Archaeology 2013). In 2018 two samples were dated from Borehole 27, located 0.35km to the south-east of Area 1 (Headland Archaeology 2018). The location of these cores is now covered by the Keadby 2 compound.
- 5.3.9. Using the data from these investigations, it is possible to estimate the likely period of organic accumulation in Areas 1 and 2 (Table 5). Overall the sand unit in both areas may represent a pre-Iron Age land-surface with the area subsumed by the encroaching floodplain by the Iron Age. This estimation is based on the relative OD heights of the previously investigated peat units and does not take into account more localised accumulation/waterlogging.
- 5.3.10. It seems likely that the deposits recorded in the auger survey may correlate to Peat 3, or even 4, in the Headland sequence (section 2.2). Although independent dating is required to confirm this.

Location	Ground Level (m OD)	Sample Depth Top (m BGL)	Sample Depth Base (m BGL)	Sample Elevation Top (m OD)	Sample Elevation Base (m OD)	Radiocarbon Age (BP)	Date cal BC (95.4%)	Period	lab id
									SUERC
									Peat -
Core 2	0.57	0.84	0.85	-0.27	-0.28	2132 ± 27	350-54	IA	Humic
									Beta 498421
Keadby									Larix/Picea/
2	0.00	4 50	1.0	0.70	0.77	4400 . 00	0070 0500	N I a a l'Ala i a	Pinus
BH27	0.83	1.56	1.6	-0.73	-0.77	4100 ± 30	2870-2500	Neolithic	Charcoal
									198422
Keadby									non-oak
2								Neolithic-	root/stem
BH27	0.83	1.56	1.6	-0.73	-0.77	3960 ± 30	2570-2350	EBA?	frags
									SUERC 42948
Cara 1	0.01	0.00	0.0	0.00	0.00	2200 - 20	F07 007	1.0	Peat -
Core 1	0.01	0.89	0.9	-0.88	-0.89	2369 ± 29	537-387	IA	HUMIC
Core 2	0.57	1.7	1.71	-1.13	-1.14	3584 ± 29	2027-1881	EBA	SUERC 42956

Trent and Peak Archaeology Keadby 3 Low Carbon Gas Power Station, Lincolnshire Report No.047/2021

Location	Ground Level (m OD)	Sample Depth Top (m BGL)	Sample Depth Base (m BGL)	Sample Elevation Top (m OD)	Sample Elevation Base (m OD)	Radiocarbon Age (BP)	Date cal BC (95.4%)	Period	lab id
									Peat - Humic
Coro 2	0.57	2.22	2.24	1 76	1 77	4107 + 20	2865 2572	Noolithia	SUERC 42957 Peat -
0016 2	0.37	2.33	2.04	-1.70	-1.77	4107 ± 23	2003-2373		SUERC 42958 Peat -
Core 2	0.57	2.58	2.59	-2.01	-2.02	4476 ± 27	3339-3029	Neolithic	Humic SUERC 42949 Peat -
Core 1	0.01	2.45	3.91	-2.44	-2.46	4457 ± 34	<u>3341-3013</u> 9660-9304	Neolithic	Humic SUERC 42950 Peat - Humic
Core 1	0.01	4.27	4.28	-4.26	-4.27	11397 ± 40	11423- 11196	LUP	SUERC 42954 Peat - Humic

Table 4: Previously dated deposits from the environs of the site (Headland 2013 and 2018)

Location	Ground Level (m OD)	Peat Depth Top (m BGL)	Peat Depth Base (m BGL)	Peat Elevation Top (mOD)	Peat Elevation Base (mOD)	Period Estimate
Area 1						IA/RB/
AG06	0.49	0.70	1.00	-0.21	-0.51	and later
Area 2 AG73	1 24	1 65	1 75	-0 41	-0.51	IA/RB?

Table 5: Estimated / anticipated ages of peat deposits observed in Area 1 and 2 based on previous work

Warp/alluvial deposits

- 5.3.11. The organic deposits were overlain by laminated warp, although in places this deposit was more homogenous and has been suggested to represent natural alluviation. In both cases the deposits were highly oxidised and dominated by minerogenic sediment. In places these deposits directly overlay the sand unit, particularly the north-western half of Area 2 and the southern end of Area 1 (Figures 03 and 04). This correlates with the higher areas of the underlying sand which were presumably above the level of general waterlogging for much of the time period represented.
- 5.3.12. Warping was undertaken within the lower Trent valley for two principal reasons: to make unproductive peaty and acidic soils workable and to reduce the impact of seasonal inundations and waterlogging by artificially increasing the ground surface level (Lillie 1998). This process was largely achieved by the deliberate 'flood-warping' of areas, with material (silts and clays) carried in suspension

being allowed to settle and accumulate throughout areas where warping was desirable. Warping was undertaken around and within Keadby from the late 18th into the early 19th centuries with no evidence or records of warping events having taken place after 1860 (Lillie 1998, 110). It is therefore likely that where warp deposits overlie the sands, pre-18th century archaeological material and remains may be preserved.

5.4 Potential impact on deposits

- 5.4.1. The proposed development is likely to include ground reduction across both areas and given the relatively thin level of warp/organic alluvial cover the underlying surface of the sand is likely to be impacted upon.
- 5.4.2. The work carried out at Flixborough demonstrates reworking of the sands within the Trent Valley from the later prehistoric period onwards which is likely to mask former land-surfaces at a variable elevations. The data available from previous work suggests that in other locations the upper overlying organic deposits are likely to have been deposited by the Iron Age- Roman Period. It is therefore inferred that the organic deposits recorded in Areas 1 and 2 may also be of similar age and that the surface of the sands may preserve earlier prehistoric, i.e pre-Iron Age remains.
- 5.4.3. There also remains the possibility that the underlying sands have the potential to preserve multi-period land-surfaces owing to this later reworking of the deposits. Selected test pitting as part of trial trench evaluation would allow the investigation and characterisation of both the deposits and any associated archaeological remains, especially lithics (HE 2019).
- 5.4.4. For the most part the organic deposits recorded at the site demonstrated extensive desiccation. Only in areas of deeper accumulation did the deposits display a better potential for the preservation of palaeoenvironmental and waterlogged archaeological remains.

5.5. Consideration of research aims

5.5.1. No specific research aims were identified prior to fieldwork however the site does have the potential to address the following East Midlands Research Objectives;

5.5.2. The recent draft guidance for the management of lithic scatters provides the methodological approach to investigate such landscapes (HE 2019). Test

pitting and sieving for lithic recovery is often the only method by which earlier archaeological remains area able to be prospected for.

- 5.5.3. The site also has the potential to add further to the chronological framework for the deposition and reworking of the underlying sands. The OSL dates recovered from the work at Flixborough demonstrate the efficacy of the technique and a dating programme to establish any reworking will help better understand the significance of the underlying deposits (McDonnell 2003).
- 5.5.4. The survey demonstrates a relatively simple sequence of deposits overlying the sands which for the most part are desiccated and are likely to have better preservation of palaeoenvironmental remains in areas of deeper accumulation.

5.6. Conclusions

5.6.1. The site has demonstrated that a relatively thin overlying organic and warp sequence is represent in both areas. These deposits mask a buried land surface of potentially pre-Iron Age date, although this requires confirmation by a dating programme. The sands have the potential to also preserve earlier landsurfaces or reworked archaeological remains and again require further evaluation, i.e test pitting, to better understand this potential.

6. BIBLIOGRAPHY

AECOM. 2020a. Land at and in the Vicinity of the Keadby Power Station Site, Trentside, Keadby, North Lincolnshire. Preliminary Environmental Information (PEI) Report Volume II – Appendix 15A: Cultural Heritage Desk-Based Assessment. Unpublished report: AECOM.

AECOM. 2020b. The Keadby 3 Low Carbon Gas Power Station Project Written Scheme of Investigation for Geophysical Survey and Auger Survey. Unpublished report: AECOM.

Bateman, M.D, Evans, D, J, A, Buckland, P.C, Connell, E.R, Friend, R. J, Hartmann, D. Moxon, H. Fairburn, W.A, Panagiotakopulu, E. Ashurst, R.A. 2015. 'Last glacial dynamics of the Vale of York and North Sea lobes of the British and Irish Ice Sheet.' *Proceedings of the Geologists' Association* 126: 6, 712-730

Cameron, K. 1998 *A Dictionary of Lincolnshire Place-Names*, English Place-Name Society, Nottingham

Chartered Institute for Archaeologists. 2019. Code of Conduct. Chartered Institute for Archaeologists, Reading, October 2019.

ClfA. 2020a Standard and guidance for archaeological field evaluation. Chartered Institute for Archaeologists, Reading, October 2020.

ClfA. 2020b. Standard and Guidance for the creation, compilation, transfer and deposition of archaeological archives. Chartered Institute for Archaeologists, Reading, June 2020.

Cooper, NJ (ed) 2006. The Archaeology of the East Midlands. An Archaeological Resource Assessment and Research Agenda. University of Leicester Archaeological Services, Leicester Archaeology Monograph s No. 13

Haselgrove, C, Armit, I, Champion, TC, Creighton, J, Gwilt, A, Hill, JD, Hunter, F and Woodward, A. 2001. Understanding the British Iron Age: An agenda for action - a report for the Iron Age research seminar and Council of the Prehistoric Society. The Trust for Wessex Archaeology: Salisbury

Headland Archaeology Ltd. 2012a. Keadby Wind Farm North Lincolnshire. Palaeoenvironmental Report on the Results of the Gouge Auger Sediment Survey. Unpublished Report: Headland Archaeology Ltd.

Headland Archaeology Ltd. 2012b. Keadby Wind Farm, North Lincolnshire. Palaeoenvironmental Report on the results of the Gouge Auger Sediment Survey. Unpublished Report: Headland Archaeology Ltd.

Headland Archaeology. 2013. Keadby Wind Farm, North Lincolnshire. Report on trial trench evaluation of upper peat deposits and coring programme. Unpublished Report: Headland Archaeology Ltd.

Headland Archaeology. 2014. Keadby Wind Farm, North Lincolnshire. Results of an archaeological watching brief and excavation at Keadby Wind Farm, North Lincolnshire. Unpublished Report: Headland Archaeology Ltd.

Headland Archaeology Ltd. 2018a. Keadby II Combined Cycle Gas Turbine (CCGT) Power Station, North Lincolnshire, Archaeological Evaluation. Unpublished report: Headland Archaeology Ltd.

Headland Archaeology Ltd. 2018b. Keadby II Combined Cycle Gas Turbine (CCGT) Power Station, North Lincolnshire, Paleoenvironmental Assessment. Unpublished report: Headland Archaeology Ltd.

Headland Archaeology Ltd. 2019. Keadby II Combined Cycle Gas Turbine (CCGT) Power Station, North Lincolnshire, Archaeological Watching Brief. Unpublished report: Headland Archaeology Ltd.

Historic England. 2006, Management of Recording Projects in the Historic Environment (MoRPHE). Swindon: Historic England.

Historic England. 2015a. Environmental Archaeology: A guide to the theory and practice of methods, from sampling and recovery to post-excavation (second ed.). Swindon:Historic England.

Historic England. 2015b. Geoarchaeology: Using earth sciences to understand the archaeological record. Swindon:Historic England.

Historic England. 2019. Managing Lithic Scatters and Sites: Archaeological guidance for planning authorities and developers. DRAFT. Historic England:Swindon.

Historic England. 2020. *Deposit Modelling and Archaeology: Guidance for mapping buried deposits.* Swindon. Historic England.

James, S and Millett, M. (eds) 2001. *Britons and Romans: advancing a research agenda.* Council for British Archaeology Research Report 125.

Knight, D., Vyner, B., and Allen, C. 2012 *East Midlands Heritage: An Updated Research Agenda and Strategy for the Historic Environment of the East Midlands.* UON & YAT: Derbyshire.

Lillie, M 1998. The palaeoenvironmental survey of the lower Trent valley and Winterton Beck, in Van de Noort, R and Ellis, S (eds) Wetland Heritage of the Ancholme and Lower Trent Valley. Humber Wetlands Project.

Le Quesne, C. 2015. Keadby II Power Station: Historic Environment Desk-Based Assessment. Unpublished report: Environmental Resources Management.

McDonnell, G. (ed). 2002. North Lincolnshire Coversands Research Project. ASLF/PD3548. Historic England:Swindon.

PC-A 2015. Crowle Drainage improvements, Isle of Axholme, North Lincolnshire: archaeological monitoring and recording. Unpublished report 1188.

PC-A 2016. Crowle Drainage improvements, Isle of Axholme, North Lincolnshire: Phase 2 archaeological monitoring and recording. Unpublished report 1377.

Pettitt, P, Gamble, C and Last, J (eds.) 2008. *Research and conservation framework for the British Palaeolithic.*

Prehistoric Society 1999. Research Frameworks for the Palaeolithic and Mesolithic of Britain and Ireland. Prehistoric Society

Roberts, B (ed) 2008. Bronze Age Review. Volume 1, Creating a research agenda for the Bronze Age in Britain. British Museum, London

Roskams, S and Whyman, M. 2005. *Yorkshire Archaeological Research Framework: resource assessment.* Yorkshire Archaeological Research Framework Forum/English Heritage

Roskams, S and Whyman, M. 2007. Yorkshire Archaeological Research Framework: research agenda. Yorkshire Archaeological Research Framework Forum/English Heritage

Schmidt, A, Linford, P, Linford, N, David, A, Gaffney, C, Sarris, A & Fassbinder, J. 2016. *EAC Guidelines for the Use of Geophysics in Archaeology. Questions to Ask and Points to Consider.* Europae Archaeologia Consilium (EAC), Belgium

Troels-Smith, J. 1955. Karakteriseringaf lose jordater (characterisation of unconsolidated sediments). DenmarksGeologiskeUndersogelse, Series IV/3, 10, 73

Van der Veen, M, Livardi, A and Hill, A. 2007. The archaeobotany of Roman Britain: current state and identification of research priorities. *Britannia* 38, 181–210

ACKNOWLEDGEMENTS

TPA would like to thank Jennifer Wilson (AECOM) for commissioning the work and for their assistance throughout the project. The survey was carried out by Kristina Krawiec and Tom Keyworth.

Darkness		Degre	ee of Stratification	Degree	of Elasticity	Degree	of Dryness
nig.4	black	strf.4	well stratified	elas.4	very elastic	sicc.4	very dry
nig.3		strf.3		elas.3		sicc.3	
nig.2		strf.2		elas.2		sicc.2	
nig.1		strf.1		elas.1		sicc.1	
nig.0	white	strf.0	no stratification	elas.0	no elasticity	sicc.0	water

Appendix 1-Troels-Smith table

	Sharpness of Upper Boundary
lim.4	< 0.5mm
lim.3	< 1.0 &> 0.5mm
lim.2	< 2.0 &> 1.0mm
lim.1	< 10.0 &> 2.0mm
lim.0	> 10.0mm

P			
	Sh	Substantia humosa	Humous substance, homogeneous microscopic structure
	Tb	T. bryophytica	Mosses +/- humous substance
l Turfa	TI	T. lignosa	Stumps, roots, intertwined rootlets, of ligneous plants
	Th	T. herbacea	Roots, intertwined rootlets, rhizomes of herbaceous plants
	DI	D. lignosus	Fragments of ligneous plants >2mm
ll Detritus	Dh	D. herbosus	Fragments of herbaceous plants >2mm
	Dq	D. granosus	Fragments of ligneous and herbaceous plants <2mm >0.1mm
III Limus	Lf	L. ferrugineus	Rust, non-hardened. Particles <0.1mm
	As	A.steatodes	Particles of clay
IV Argilla	Aq	A. granosa	Particles of silt
	Ga	G arenosa	Mineral particles 0.6 to 0.2mm
V Grana	Gs	G saburralia	Mineral particles 2.0 to 0.6mm
Voluna	Ga(min)	G dareosa minora	Mineral particles 6.0 to 2.0mm
	Ga(mai)	G dareosa maiora	Mineral particles 20.0 to 6.0mm
	Ptm	Particulaetestaemolloscorum	Fragments of calcareous shells

Physical and sedimentary properties of deposits according to Troels-Smith (1955)

Appendix 2 Core Logs

Area 1 (AG01-21)

Transect 1

<u>AG01</u>

0-0.35m	Topsoil				
0.35-0.55m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warn silt	clay sand	I	
$0.55_{-}0.65m$		ST SIL			LIR
0.55-0.0511		0		3100	
	4	U	0	3	4
	Ag2 Sh2	11++			
	Organic s	silt, well h	umified wi	th wood f	ragments at top, wood is fibrous
065-0.75m	DA	ST	EL	SICC	UB
	4	0	0	3	2
	Ga4				
	Brown sa	and			
0.75-1.30m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	- Ga3 Ad1	0	0	0	-
	Orange-	huff eilty e	and wate	or strike at	t 0, 80m
100	Orange-	bull Sitty S	and, wate	a suike a	0.0011
<u>AGUZ</u> 0.0.25m	Tanaail				
0-0.350	Topson	<u>от</u>		0100	
0.35-0.65m	DA	SI	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warp, silt	clay sand		
0.65-0.75m	DA	ST	EL	SICC	UB
	4	0	0	4	2
	Ga3 Aq1				
	Brown sil	t sand			
0 75-1 20m		ST	FI	SICC	LIB
0.70 1.2011	2	0		3	2
	2	0	0	5	2
	Ga4		4		
1000	Orange-	buff sand	trenaing t	o butt sar	10
<u>AG03</u>					
0-0.35m	lopsoil				
0.35-0.65m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warp, silt	clay sand		
0.65-0.88m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Aa2 Sh2	Ť	0	0	•
	Agz Oliz	iit woll b	umified wi	th wood f	reamente et ten weter etrike et
0.70m	Organic	siit, weii fi	unnieu wi		raginents at top, water strike at
0.70m		OT			
0.80-0.98m	DA	SI	EL	SICC	OB
	4	0	0	3	2
	Ga1 Ag1				
	Brown sil	ty sand			
0.98-1.30m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	Ga3 Ao1				
	Pale arev	/ sand silt	v sand		
AG04			Joana		
<u>/////////////////////////////////////</u>					

0-0.35m	Topsoil				
0.35-0.50m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
0.05.0.00	Oxidised	warp, silt	clay sand		
0.05-0.80m	DA 4	SI	EL	SICC	UB
	4 4 a2 Sh2	U TI	0	3	4
	Organic	silt. well h	umified wi	ith wood f	ragments at top obstruction at base
	- J	, -			
Transect 2					
<u>AG05</u>					
0-0.35m	Topsoil	от			
0.35-0.55M	DA	SI 1	EL	SICC	UB 4
	5 Ga1 Δα2	ι Δς1	0	4	4
	Oxidised	warp silt	clay sand	I	
0.55-0.70m	DA	ST ST	EL	SICC	UB
	4	0	0	3	4
	Ag2 Sh2	TI			
	Organic	silt, well h	umified w	ith wood f	ragments at top
0.70-0750m	DA	ST	EL	SICC	UB
	4	0	0	3	2
	Ga4	un al			
0.75.1.20m	Brown Sa	ana ST		SICC	LID
0.75-1.5011	2	0		3	2
	Ga3 Aq1	0	0	0	2
	Orange-	buff silty s	sand, wate	er strike a	t 0.80m
<u>AG06</u>	0	,	,		
0-0.40m	Topsoil				
0.40-0.70m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1		1	
0.70.1.00m		warp, siit			LID
0.70-1.0011		0		3	4
	Aa1 Sh3	TI	0	5	-
	Silty peat	t. well hun	nified with	wood fra	aments at top, wet at 1.00m
1.00-1.05m	DA	ST	EL	SICC	UB
	4	0	0	3	2
	Ga4				
	Brown sa	and			
1.05-1.30m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	Gas Agr	buff cilty c	and wate	or etriko o	t 1 00m
AG07	Orange-	bull Silly a	sanu, wate	er suike a	1.0011
<u>0-0.30m</u>	Topsoil				
0.30-0.70m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warp, silt	clay sand	1	
0.70-0.80m	DA	ST	EL	SICC	UB
	4	U TI	U	3	4
	Agi Sh3	ll Ewollburg	nifind with	wood fro	amonte at top
0.80-0.90m		st. ST	FI	SICC	IIR
0.00-0.3011		51		5100	

	4 Ga4	0	0	3	2
0.90-1.20m	Brown sa DA 2	and ST 0	EL 0	SICC 3	UB 2
1000	Ga3 Ag1 Orange-	buff silty s	sand, wate	er strike at	t 1.00m
<u>AG08</u> 0-0 35m	Topsoil				
0.35-0.65m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
0 65-0 85m		st st	ciay sand	SICC	ЦВ
0.00 0.0011	4	0	0	3	4
	Ag1 Sh1	TI	·	•	
	Silty peat	t, well hun	nified with	wood fra	gments at top
0.85-0.95m	DA	ST	EL	SICC	UB
	4	0	0	3	2
	Ga4 Brown sa	and water	at 0.90m		
0.90-1.20m	DA	ST	EL	SICC	UB
0.000	2	0	0	3	2
	Ga3 Ag1				
	Orange-	buff silty s	sand, poor	r recovery	,
Transect 3 AG09	Tanasil				
0-0.45m		ст		SICC	LIB
0.45-0.5511	3	1	0	4	4
	Ga1 Ag2	As1	°	•	
	Oxidised	warp, silt	clay sand	1	
0.55-0.80m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag2 Sh2	ll silt woll b	umified wi	ith wood f	ragments at top
080-0 90m	DA	ST	FI	SICC	LIB
000 0.00111	4	0	0	3	2
	Ga4				
	Brown sa	and			
0.90-1.30m	DA	ST	EL	SICC	UB
		0	0	3	2
	Orange-	buff silty s	sand, wate	er strike at	t 1.00m
AG10	orango	bull only c	, mai		
0-0.40m	Topsoil				
0.40-0.80m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
0.80-1.00m		st st	FI	SICC	LIB
0.00 1.0011	4	0	0	3	4
	Ag1 Sh3	TI	-	-	
	Silty peat rooty	t, well hun	nified with	wood fra	gments at top, water strike at 0.80m,
1.00-1.05m	DA	ST	EL	SICC	UB
	4	0	0	3	2
	Ga3 Ag1				

	Brown sil	ty sand			
1.05-1.20m	DA	ŚT	EL	SICC	UB
	2	0	0	3	2
	Ga3 Ag1				
	Buff sand	ł			
<u>AG11</u>					
0-0.35m	Topsoil	<u>от</u>		0100	
0.35-0.80m	DA	SI	EL	SICC	0B
	3	1	0	4	4
	Gal Agz	AS I		ı	
0.90.1.10m		varp, siit			LID
0.00-1.1011		0		3	
	Ad1 Sh3	TI	0	5	-
	Silty peat	well hum	ified with	wood frac	ments at top occasional roots
1 10-1 30m	DA	ST	FI	SICC	UB
	2	0	0	3	2
	Ga3 Aq1	•	•	•	-
	Orange-	buff siltv s	and, wate	er strike at	t 1.00m
AG12	5		,		
0-0.40m	Topsoil				
0.40-0.70m	DA	ST	EL	SICC	UB
	3	0	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warp, silt	clay sand	l, mottled	softer with depth
0.70-0.90m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag2 Sh2	TI			
	Organic s	silt, well h	umified wi	ith wood f	ragments at top
0.90-1.05m	DA	ST	EL	SICC	UB
	4	0	0	3	2
	Ga4			0.00	
4.05.4.00	Brown sa	ind, water	strike at	0.90m	
1.05-1.80m	DA	51	EL		0B
		I	0	Ζ	2
	Ga4 AS+	cond tro	ndina into	buff cond	l vorv wat accessional clav lansas
Transact 4	Fale grey	sanu tre	nuing into	bull Sano	i very wet occasional clay lenses
<u>A015</u> 0-0.35m	Topsoil				
0 35-0 55m		ST	FI	SICC	UB
0.00 0.0011	3	1	0	4	4
	Ga1 Ag2	As1	0		
	Oxidised	warp, silt	clav sanc	ł	
0.55-0.80m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh3	TI			
	Silty peat	well hum	ified with	wood frag	gments at top
0.80-0.90m	DA	ST	EL	SICC	UB
	4	0	0	3	2
	Ga4				
	Brown sa	and water	at 0.90m		
0.90-1.20m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	Ga4				
1011	buff sand	l			
<u>AG14</u>	Taras'				
U-U.35M	ropsoli				

0.35-0.60m	DA 3	ST 1	EL 0	SICC 4	UB 4
0.60-0.65m	Ga1 Ag2 Oxidised DA 4	As1 warp, silt ST 0	clay sanc EL 0	I SICC 3	UB 4
0.65-0.70m	Silty pear DA 4 Ga4	t, well hun ST 0	nified with EL 0	wood fra SICC 3	gments at top UB 2
0.70-1.20m	Brown sa DA 2 Ga3 Ag1	and ST 0	EL 0	SICC 3	UB 2
AG15	Pale grey	/-DUIT SIITY	sand, dry	/	
0-0.35m 0.35-0.55m	Topsoil DA 3	ST 1	EL 0	SICC 4	UB 4
0 55-0 60m	Ga1 Ag2 Oxidised	As1 warp, silt	clay sand	I SICC	UB
0.00-0.0011	4 Ga4 Brown or	0	0	3	2
0.60-1.20m	DA 2 Ga3 Aq1	ST 0	EL 0	SICC 3	UB 2
	Pale grev	/-buff siltv	sand		
Transect 5 AG16					
0-0.35m 0.35-0.40m	DA 3 Gal Ag2	ST 1 As1	EL 0	SICC 4	UB 4
0.40-0.53m	Oxidised DA 4	warp, silt ST 0	clay sanc EL 0	I SICC 3	UB 4
	Ag1 Sh3			_	
0.53-1.20m	Silty pea DA 2 Ga4	t, well hun ST 0	nified very EL 0	dry SICC 3	UB 2
1017	Pale grey	/ sand			
<u>AG17</u> 0-0.30m	Topsoil				
0.30-0.55m	DA 3 Gal Ag2	ST 1 As1	EL 0	SICC 4	UB 4
0.55-0.60m	Oxidised DA 4 Ga3 Ag1	warp, silt ST 0	clay sanc EL 0	SICC 3	UB 2
0.55-1.20m	Brown si DA 2 Ga4	ty sand ST 0	EL 0	SICC 3	UB 2

	Pale grey	/ sand			
Transect 6					
AG18					
0-0.35m	Topsoil				
0.35-0.60m	DA	ST	FI	SICC	UB
0.00 0.0011	3	1	0	4	4
		۱ ۸ с 1	0	7	4
	Gal Ayz	ASI Worp oilt		1	
0.00.0.00	Oxidised	warp, siit	ciay sand		
0.60-0.62m	DA	51	EL	SICC	0B
	4	0	0	3	4
	Ag1 Sh3	TI			
	Silty peat	t, well hun	nified with	wood frag	gments at top
0.62-1.20m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	Ga4				
	Pale arev	/ sand			
AG19	0,				
0-0.35m	Topsoil				
0 35-0 55m		ST	FI	SICC	LIR
0.00 0.0011	3	1	0	1	4
		1	0	-	7
	Gal Ayz				
0 55 0 50	Oxidised	warp, siit	ciay sand		
0.55-0.58M	DA	SI	EL	SICC	0B
	4	0	0	3	4
	Ag1 Sh3	TI			
	Silty peat	t, very dry			
0.58-1.20m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	Ga4				
	Pale grev	/ sand			
Transect 7	9 ,				
AG20					
$\frac{1020}{0.035m}$	Topsoil				
0.25.0.50m		ст	EI	SICC	IID
0.55-0.5011	2	31		3100	4
	0-1 0-0	1	0	4	4
	Gai Ag2	AST			
	Oxidised	warp, silt	clay sand		
0.50-0.55m	DA	SI	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh3	TI			
	Silty peat	t, well hur	nified with	wood frag	gments at top
0.55-1.20m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	Ga4				
	Pale arev	/ sand			
AG21	9.09				
$\frac{n021}{0.035m}$	Topsoil				
$0.35_0.70m$		sт		SICC	IIR
0.55-0.7011	2	1		4	4
	3 Co1 A ~ 0	1	0	4	4
	Gal Agz	AST			
	Oxidised	warp, siit	clay sand		
0.70-0.75m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh3	TI			
	Silty peat	t, well hun	nified with	wood frag	gments at top
0.62-1.20m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	Ga4				

Pale grey sand

Area 2 (AG22-51,	53-82)				
Transect 1 AG22					
0-0.3m	Topsoil				
0.34-0.40m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ag1 As2	Ga1			
	Oxidised	warp, lan	ninated sil	t clay san	d
0.40-0.60m	DA	ST	EL	SICC	UB
	3	0	0	4	4
	Ag2 As2				
	Oxidised	alluvium,	mottled g	rey brown	silt clay
0.60-0.73m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh1	Gaz			
0.70.4.40	Silty orga	anic sand,	well hum	ified	
0.73-1.10m	DA	51	EL	SILL	0B
	2	0	0	3	4
	Ga4 Brown fin	o cond tr	onding int	a huff aan	4
AC23	DIOWITII	le sanu in		0 Dull Sall	u
<u>A023</u> 0-0 30m	Topsoil				
0 30-0 50m	DA	ST	FI	SICC	UB
	4	1	0	4	4
	Ga4	•	•	•	•
	Brown fir	ne sand			
0.50-0.58m	DA	ST	EL	SICC	UB
	3	0	0	4	4
	Aq2 As2	-	-		
	Oxidised	alluvium,	mottled g	rey brown	silt clay
0.58-0.65m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh1	Ga2			
	Silty orga	anic sand,	well hum	ified	
0.65-0.76m	DA	ST	EL	SICC	UB
	3	0	0	3	4
	Ga4				
	Brown fir	ne sand			
0.76-1.10m	DA	SI	EL	SICC	UB
	2	0	0	3	4
	Ga4			0.00	
AC24	Butt tine	sand wate	er strike at	10.80m	
AGZ4 0-0.30m	Topsoil				
0-0.3011 0-30-0-45m		sт		SICC	LIR
0.50-0.45111	3	1		1	1
	Gal Ag2	ι Δς1	0	4	4
	Oxidised	warn lan	ninated sil	t clav san	h
0 0 45-0 63m	DA	ST ST	FI	SICC	UB
0.0.40 0.0011	3	0	0	4	4
	Ag2 As2	0	U U	•	•
	Oxidised	alluvium.	mottled a	rev brown	silt clav
0.65-0.76m	DA	ST	EL	SICC	UB .
	3	0	0	3	4
	Ga4				

	Brown fir	ne sand			
0.76-1.10m	DA 2	ST 0	EL 0	SICC 3	UB 4
	Ga4 Buff fine	sand wate	er strike at	t 0 90m	
AG25	Ban inic			0.0011	
0-0.28m	Topsoil				
0.28-0.45m	DÁ	ST	EL	SICC	UB
	4	0	0	4	4
	Ga2Ag2				
0.45.0.40.0	Mottled b	orown silty	sand	0100	
0.45-0.48M	DA 4	51	EL	3100	0B 4
	4 Ga4	0	0	3	4
	Dark brov	wn fine sa	nd		
0.48-1.10m	DA	ST	EL	SICC	UB
	2	0	0	3	4
	Ga4				
	Buff fine	sand wate	er strike at	t 0.80m	
Transect 2					
<u>AG26</u>	-				
0-0.30m		ст			
0.30-0.3411	2 2	1		3100	0D 1
	Ga1 Ag2	ı As1	0	-	7
	Oxidised	warp. lan	ninated sil	t clav san	d
0.34-0.38m	DA	ST	EL	SICC	UB
	3	0	0	4	4
	Ag2 As2				
	Oxidised	alluvium,	mottled g	rey brown	silt clay
0.38-0.62m	DA	ST	EL	SICC	UB
	4 Aa1 Sh1	0	0	3	4
	Silty oras	Gaz nic sand	well hum	ified	
0.62-1.10m	DA	ST	EL	SICC	UB
0.02	2	0	0	3	4
	Ga4				
	Buff fine	sand wate	er strike at	t 0.70m	
<u>AG27</u>	T				
0-0.30m		ст		8100	LID
0.30-0.3011	2 2	1		3100 1	0Б Л
	Ga1 Ao2	As1	0	7	7
	Oxidised	warp, lan	ninated sil	t clay san	d
0.38-0.55m	DA	ST	EL	SICC	UB
	2	0	0	3	4
	Ga4				
	Pale bro	wn fine sa	and		
0.55-1.10m	DA	SI	EL	SICC	0B
	2	0	0	3	4
	Ga4 Buff fine	cand wate	ar strika at	10 80m	
AG28				0.0011	
0-0.30m	Topsoil				
0.30-0.45m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			

	Oxidised	warp, lan	ninated sil	t clay san	d
0.45-0.54m	DA	ST	EL	SICC	UB
	3	0	0	4	4
	Ag2 As2				
	Oxidised	alluvium,	mottled c	rev browr	n silt clay
0.54-0.58m	DA	ST	EL	SICC	UB
0.0.1.0.000	4	0	0	3	4
	Ag1 Sh1	Ga2	U	Ū	•
	Silty ora:	nic sand	well hum	ified	
0.58-0.64m		аны зани, ст			LIB
0.00-0.0411	2	0		2	2
	ა Cიე / ო1	0	0	3	3
	Gas Agi		I		
0.04.4.40	Brown m		sand	0100	
0.64-1.10m	DA	SI	EL	SICC	OB
	2	0	0	3	3
	Ga4				
	Buff sand	d water at	0.70m		
<u>AG29</u>					
0-0.30m	Topsoil				
0.30-0.38m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warp, lan	ninated sil	t clay san	d
0.38-0.42m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh1	Ga2	•	•	
	Silty orga	anic sand	well hum	ified	
0.42 - 1.10m		ST	FI	SICC	LIB
0.42-1.1011	2	0		3	3
	2 Ga4	0	0	5	5
	Ga4 Buff con	d water of	0.50m		
Troppost 2	Dull Sand	i waler al	0.5011		
A COO					
<u>AG30</u>	- "				
0-0.40m	lopsoil	o . ∓		0.00	
0.40-0.45m	DA	SI	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh1	Ga2			
	Silty orga	anic sand,	well hum	ified	
0.45-1.55m	DA	ST	EL	SICC	UB
	2	2	0	3	4
	Ga4				
	Buff fine	sand with	occasion	al silt lami	inations, water at 0.60m
AG31					
0-0.40m	Topsoil				
0.40-0.67m					
	DA	ST	EL	SICC	UB
	DA 3	ST 0	EL 0	SICC 4	UB 4
	DA 3 Ga2 Aq2	ST 0	EL 0	SICC 4	UB 4
	DA 3 Ga2 Ag2 Brown si	ST 0	EL 0	SICC 4	UB 4
0 67-1 38m	DA 3 Ga2 Ag2 Brown si DA	ST 0 Ity sand	EL 0	SICC 4	UB 4
0.67-1.38m	DA 3 Ga2 Ag2 Brown si DA 2	ST 0 Ity sand ST 0	EL 0 EL	SICC 4 SICC	UB 4 UB
0.67-1.38m	DA 3 Ga2 Ag2 Brown si DA 2 Ga4	ST 0 Ity sand ST 0	EL 0 EL 0	SICC 4 SICC 3	UB 4 UB 4
0.67-1.38m	DA 3 Ga2 Ag2 Brown si DA 2 Ga4 Buff finc	ST 0 Ity sand ST 0	EL 0 EL 0	SICC 4 SICC 3	UB 4 UB 4
0.67-1.38m	DA 3 Ga2 Ag2 Brown si DA 2 Ga4 Buff fine	ST 0 Ity sand ST 0 sand wate	EL 0 EL 0 er strike a	SICC 4 SICC 3 t 0.70m	UB 4 UB 4
0.67-1.38m	DA 3 Ga2 Ag2 Brown si DA 2 Ga4 Buff fine	ST 0 Ity sand ST 0 sand wate	EL 0 EL 0 er strike a	SICC 4 SICC 3 t 0.70m	UB 4 UB 4
0.67-1.38m <u>AG32</u> 0-0.40m	DA 3 Ga2 Ag2 Brown si DA 2 Ga4 Buff fine Topsoil	ST 0 lty sand ST 0 sand wate	EL 0 EL 0 er strike a	SICC 4 SICC 3 t 0.70m	UB 4 UB 4
0.67-1.38m <u>AG32</u> 0-0.40m 0.40-0.94m	DA 3 Ga2 Ag2 Brown si DA 2 Ga4 Buff fine Topsoil DA	ST 0 Ity sand ST 0 sand wate	EL 0 EL o er strike a EL	SICC 4 SICC 3 t 0.70m SICC	UB 4 UB
0.67-1.38m <u>AG32</u> 0-0.40m 0.40-0.94m	DA 3 Ga2 Ag2 Brown si DA 2 Ga4 Buff fine Topsoil DA 3	ST 0 Ity sand ST 0 sand wate ST 1	EL 0 er strike a EL 0	SICC 4 SICC 3 t 0.70m SICC 4	UB 4 UB 4 UB
0.67-1.38m <u>AG32</u> 0-0.40m 0.40-0.94m	DA 3 Ga2 Ag2 Brown si DA 2 Ga4 Buff fine Topsoil DA 3 Ag2 As2	ST 0 Ity sand ST 0 sand wate ST 1 Ga+	EL 0 er strike a EL 0	SICC 4 SICC 3 t 0.70m SICC 4	UB 4 UB 4
0.67-1.38m <u>AG32</u> 0-0.40m 0.40-0.94m	DA 3 Ga2 Ag2 Brown si DA 2 Ga4 Buff fine Topsoil DA 3 Ag2 As2 Oxidised	ST 0 lty sand ST 0 sand wate ST 1 Ga+ warp, mo	EL 0 er strike a EL 0 ottled grey	SICC 4 SICC 3 t 0.70m SICC 4 brown sil	UB 4 UB 4 UB 4 t clay

0.94-1.10m	DA 2 Ga4	ST 0	EL 0	SICC 3	UB 4
	Buff fine	sand wate	er strike at	t 1.00m, o	xidised at the top
<u>AG33</u> 0-0.33m 0.33-0.50m	Topsoil DA 3 Ga3 Aq1	ST 0	EL 0	SICC 4	UB 4
0.50-0.55m	Orange b DA 3	orown occ ST 1	asionally EL 0	silty sand, SICC 4	warp UB 4
0.55-0.76m	Oxidised DA 4 Ag1 Sh1	warp, mo ST 0 Ga2	ttled grey EL 0	brown silf SICC 3	t clay UB 4
0.76-1.10m	Silty orga DA 2 Ga4	anic sand, ST 0	well hum EL 0	ified SICC 3	UB 4
AG34	Buff fine	sand wate	er strike a	t 0.80m	
0-0.30m 0.30-0.50m	Topsoil DA 3	ST 1	EL 0	SICC 4	UB 4
	Ag2 As2	Ga+	•		
0.50-0.57m	Oxidised DA 4 Ag1 Sh2	warp, mo ST 0 Ga1	ttled grey EL 0	brown silf SICC 3	t clay UB 4
0.57-0.77m	Silty orga DA 3 Ga3 Aq1	anic sand, ST 0	well hum EL 0	ified SICC 3	UB 4
0.77-1.10m	DA 2 Ga4	ST 0	EL 0	SICC 3	UB 3
	Buff fine	sand wate	er strike at	t 0.80m	
Transect 4					
0-0.30m	Topsoil				
0.30-0.40m	DA 4 Ag1 Sh1	ST 0 Ga2	EL 0	SICC 3	UB 4
0.40-1.10m	Silty orga DA 2 Ga4 Buff fine	anic sand, ST 0 sand wate	well hum EL 0 er strike at	ified SICC 3 t 0.70m, o	UB 4 xidised at top
<u>AG36</u> 0-0.25m	Tonsoil				
0.25-0.45m	DA 3 Ga1 Ag2 Oxidised	ST 1 As1 warp, larr	EL 0 ninated sil	SICC 4 t clay san	UB 4 d

0.45-0.60m	DA 4	ST 0	EL 0	SICC 3	UB 4
	Ag1 Sh+ Silty orga	Ga3 anic sand	well hum	ified	
0.60-1.20m	DA 2	ST 0	EL 0	SICC 3	UB 4
1007	Ga4 Buff fine	sand wat	er strike a	t 0.80m, t	rending into pink-buff sand
<u>AG37</u> 0.0.25m	Topooil				
0 35-0 42m		ST	FI	SICC	LIB
0.00 0.4211	3	1	0	4	4
	Ga1 Ag2	As1	-		-
	Oxidised	warp, lan	ninated si	lt clay san	ld
0.42-0.53m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh1	Ga2			
0 52 1 10m	Slity orga	anic sand,	well num	Nified trend	
0.53-1.100	DA 2	0		3	ОБ 2
	z Ga4	0	0	5	2
	Buff fine	sand wat	er strike a	t 0.80m	
AG38	2011 1110				
0-0.35m	Topsoil				
0.35-0.48m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
0.49.0.52m		warp, ian	ninated si	It clay san	
0.46-0.5211	DA 3	0			
	2 A 2 DA	0	0	4	4
	Oxidised	alluvium.	mottled o	arev browi	n silt clav
0.52-0.60m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh1	Ga2			
	Silty orga	anic sand,	well hum	ified	
0.60-0.70m	DA	ST	EL	SICC	UB
	2	0	0	3	4
	Ga4 Dark bro	wn cand			
0 70-1 20m	DAIK DIO	ST	FI	SICC	UB
0.70 1.2011	2	0	0	3	3
	Ga4	-	-	-	-
	Buff fine	sand wat	er strike a	t 0.70m	
<u>AG39</u>	-				
0-0.39m	Topsoil	от	-		
0.39-0.74m	DA	SI 1	EL	SICC	UB 4
	ა Ga1 Δα2	ι Δε1	0	4	4
	Oxidised	warn lan	ninated si	lt clav san	hd
0.74-0.77m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh1	Ga2			
	Silty orga	anic sand,	well hum	ified	
0.77-0.87m	DA	ST	EL	SICC	UB
	2	0	0	3	4
	Ga4				

	Dark brov	wn sand			
0.87-1.20m	DA	ST	EL	SICC	UB
	2	0	0	3	3
	Ga4			. P	
	Butt tine	sand wate	er strike, c	oxidised a	t the top
Transect 5					
<u>AG40</u>	Tanaail				
0.4211 0.42-0.58m		ST	FI	SICC	LIR
0.42-0.3011	2	0		3	2
	Ga3 Aq1	0	0	0	2
	Pale grey	/ sand silt	y sand		
0.58-1.00m	DA	ST	ÉL	SICC	UB
	2	0	0	3	3
	Ga4				
	Buff fine	sand wate	er strike a	t 0.80m	
1011					
<u>AG41</u> 0.0.20m	Topooil				
0.3010		sт		SICC	LIR
0.50-0.5011	2	0		3	3
	Ga4	0	0	0	5
	Pale grey	/ sand			
0.50-1.10m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	Ga4				
	Oxidised	orange s	and, wate	r strike at	0.60m, becoming pink at base
<u>AG42</u>	T				
0-0.25M		very dry a	nd clayey		LID
0.25-0.4011	2 2	0		3	
	Ga4	0	0	0	-
	Pale arev	/ sand tre	ndina into	buff fine	sand. water strike at 0.80m
AG43			5		
0-0.25m	Topsoil				
0.25-0.40m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
0.40.0 5.4 m	Oxidised	warp, lan	ninated sil	t clay san	d LIB
0.40-0.5411	2 2	0			
	Ga 4	0	0	4	4
	Orange s	and, warr)		
0.54-0.64m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warp, lan	ninated sil	t clay san	d
0.64-0.85m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag2 Sh1	G1 silt with or	مط سمالة	umified	
0 85-1 10m		SIIL WILLI SE ST	anu, well f ⊑l		UB
0.00-1.1011	2	0	0	3	3
	– Ga4	5	5	5	~
	Buff fine	sand, ver	y stiff		
			-		

<u>AG44</u>

0-0.30m	Topsoil				
0.30-0.38m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warp, lan	ninated sil	t clay san	d
0.38-0.48m	DA	ST	EL	SICC	UB
	4 A ~ 1 Ch 1	0	0	3	4
	Agr Shi	Gaz		ified	
$0.48_{-}0.1.2m$		eric sanu,			LIB
0.40-0.1.211	2	0	0	3	3
	Ga4	0	0	0	0
	Pale grev	/ sand tre	ndina into	buff fine	sand water strike at 0.80m
AG45			5		
0-0.30m	Topsoil				
0.30-0.50m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
0 50 0 04	Oxidised	warp, lan	ninated sil	t clay san	d
0.50-0.64m	DA	SI	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh1	Ga2	well hum	ified	
0.64-0.68m		eriic Sanu,			LIB
0.04-0.0011	2	0		3	
	Z Ga4	0	0	5	-
	Dark bro	wn sand			
0.68-1.20m	DA	ST	EL	SICC	UB
	2	0	0	3	3
	Ga4				
	Pale grey	/ sand tre	nding into	buff fine	sand water strike at 0.90m
Transect 6					
<u>AG46</u>					
0-0.25m	lopsoil	<u>от</u>	-	0100	
0.25-0.36M	DA 4	51	EL	SILL	UB 4
	4 Aa1 Ch1		0	3	4
	Silty oras	Gaz nic sand	well hum	ified	
0 36-0 57m		ST	FI	SICC	LIB
0.00 0.07111	2	0	0	3	4
	_ Ga4	0	U	0	
	Dark bro	wn sand			
0.57-0.90m	DA	ST	EL	SICC	UB
	2	0	0	3	3
	Ga4				
	Buff fine	sand wate	er strike a	t 0.80m	
<u>AG47</u>					
0-0.38m	Topsoil				
0.38-0.60m	DA	ST	EL	SICC	UB
	2	0	0	3	3
	Ga4				
0.60.0.02m	Pale grey	/ sand			LID
0.00-0.9211	2 2	0		3100	2
	∠ Ga4	0	0	5	2
	Oxidised	orange s	and		
0.90-1.10m	DA	ST	EL	SICC	UB
0.00 1110111	2	0	0	3	4
	<u> </u>	-	-	-	-

AC 48	Ga4 Buff sand	d, damp			
<u>AG40</u> 0.0.25m	Tanaail				
0-0.2011	TOPSOI	от		0100	
0.25-0.30m	DA	51	EL	SILL	UB 4
	4	0	0	3	4
	Ag2 Sh1	G1			
	Organic s	silt with sa	ind, well h	umitied	
0.30-0.55m	DA	ST	EL	SICC	UB
	2	0	0	3	3
	Ga4				
	Pale grey	/ sand			
0.55-0.60m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	Ga4				
	Oxidised	orange sa	and		
0.90-1.20m	DA	ST	EL	SICC	UB
	2	0	0	3	2
	Ga4				
	Buff sand	d. damp			
AG49		.,			
0-0.35m	Topsoil				
0.35-0.43m	DA	ST	EL	SICC	UB
	3	1	0	4	4
	Gal An2	Δς1	U U	•	I I
	Oxidised	warn lam	ninated sil	t clav san	d
0.43-1.20m		ST	FI	SICC	UR
0.45-1.2011	2	0		3	3
	2 Go4	0	0	5	5
	Ga4			he off a second	
	DOIO ARON	1 cond tro	ndina into	DUITT CODO	
AC50	Pale grey	/ sand trei	nding into	buff sand	i, water at 0.80m
<u>AG50</u> 0-0.35m	Pale grey	/ sand trei	nding into	butt sand	i, water at 0.80m
<u>AG50</u> 0-0.35m	Topsoil	/ sand trei	nding into		, water at 0.80m
<u>AG50</u> 0-0.35m 0.35-0.55m	Topsoil DA	ST	EL	SICC	UB
<u>AG50</u> 0-0.35m 0.35-0.55m	Pale grey Topsoil DA 3	ST	EL 0	SICC 4	UB 4
<u>AG50</u> 0-0.35m 0.35-0.55m	Pale grey Topsoil DA 3 Ga1 Ag2	ST ST As1	EL 0	SICC 4	UB 4
AG50 0-0.35m 0.35-0.55m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised	ST ST As1 warp, larr	EL 0 ninated sil	SICC 4 t clay san	UB 4
<u>AG50</u> 0-0.35m 0.35-0.55m 0.40-0.54m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA	ST ST As1 warp, lam	EL 0 ninated sil	SICC 4 t clay san	UB 4 UB
<u>AG50</u> 0-0.35m 0.35-0.55m 0.40-0.54m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4	ST 1 As1 warp, lam ST 0	EL 0 hinated sil EL 0	SICC 4 t clay san SICC 3	UB 4 UB UB 2
<u>AG50</u> 0-0.35m 0.35-0.55m 0.40-0.54m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4	ST 1 As1 warp, lam ST 0	EL 0 hinated sil EL 0	SICC 4 t clay san SICC 3	UB 4 UB UB 2
<u>AG50</u> 0-0.35m 0.35-0.55m 0.40-0.54m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa	ST 1 As1 warp, lam ST 0	EL 0 hinated sil EL 0	SICC 4 t clay san SICC 3	UB 4 UB 2
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA	y sand tre ST As1 warp, lam ST 0 and ST	EL 0 hinated sil EL 0 EL	SICC 4 t clay san SICC 3 SICC	UB 4 UB 2 UB
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2	y sand tre ST As1 warp, lam ST 0 ST 0	EL 0 hinated sil EL 0 EL 0	SICC 4 t clay san SICC 3 SICC 3	UB 4 UB 2 UB 3
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4	y sand tren ST As1 warp, lam ST 0 ST 0	EL 0 hinated sil EL 0 EL 0	SICC 4 t clay san SICC 3 SICC 3	UB 4 UB 2 UB 3
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s	y sand tren ST As1 warp, lam ST 0 and ST 0 sand wate	EL 0 hinated sil EL 0 EL 0 r at 0.90m	SICC 4 t clay san SICC 3 SICC 3	UB 4 UB 2 UB 3
<u>AG50</u> 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s	y sand tre ST As1 warp, lam ST 0 and ST 0 sand wate	EL 0 hinated sil EL 0 EL 0 r at 0.90m	SICC 4 t clay san SICC 3 SICC 3	UB 4 UB 2 UB 3
<u>AG50</u> 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m <u>AG51</u> 0-0.31m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil	y sand tren ST As1 warp, lam ST 0 and ST 0 sand wate	EL 0 hinated sil EL 0 EL 0 r at 0.90m	SICC 4 t clay san SICC 3 SICC 3	UB 4 UB 2 UB 3
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m <u>AG51</u> 0-0.31m 0.31-0.60m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA	y sand tren ST As1 warp, lam ST 0 and ST 0 sand wate	EL 0 hinated sil EL 0 r at 0.90m EL	SICC 4 t clay san SICC 3 SICC 3 SICC	UB 4 UB 2 UB 3 UB
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m <u>AG51</u> 0-0.31m 0.31-0.60m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3	y sand tren ST As1 warp, lam ST 0 and ST 0 sand wate ST 1	EL 0 hinated sil EL 0 r at 0.90m EL 0	SICC 4 t clay san SICC 3 SICC 3 SICC 4	UB 4 UB 2 UB 3 UB 4
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m <u>AG51</u> 0-0.31m 0.31-0.60m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2	y sand tree ST As1 warp, lam ST 0 and ST 0 sand wate ST 1 As1	EL 0 hinated sil EL 0 r at 0.90m EL 0	SICC 4 t clay san SICC 3 SICC 3 SICC 4	UB 4 UB 2 UB 3 UB 4
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m <u>AG51</u> 0-0.31m 0.31-0.60m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised	y sand tree ST As1 warp, lam ST 0 and ST 0 and wate ST 1 As1 warp, lam	EL 0 hinated sil EL 0 r at 0.90m EL 0 hinated sil	SICC 4 t clay san SICC 3 SICC 3 SICC 4 t clay san	UB 4 UB 2 UB 3 UB 4 d
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m <u>AG51</u> 0-0.31m 0.31-0.60m 0.60-0.75m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised DA	y sand tree ST As1 warp, lam ST 0 and ST 0 and wate ST 1 As1 warp, lam ST	EL 0 hinated sil EL 0 r at 0.90m EL 0 hinated sil EL	SICC 4 t clay san SICC 3 SICC 3 SICC 4 t clay san SICC	UB 4 UB 2 UB 3 UB 4 UB
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m AG51 0-0.31m 0.31-0.60m 0.60-0.75m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised DA 4	y sand tree ST As1 warp, lam ST 0 and ST 0 and wate ST 1 As1 warp, lam ST 0	EL 0 hinated sil EL 0 r at 0.90m EL 0 hinated sil EL 0	SICC 4 t clay san SICC 3 SICC 3 SICC 4 t clay san SICC 4	UB 4 UB 2 UB 3 UB 4 d UB 4
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m <u>AG51</u> 0-0.31m 0.31-0.60m 0.60-0.75m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 Ag2 Sh1	y sand tree ST As1 warp, lam ST 0 and ST 0 and wate ST 1 As1 warp, lam ST 0 G1	EL 0 hinated sil EL 0 r at 0.90m EL 0 hinated sil EL 0	SICC 4 siCC 3 siCC 3 SICC 3 siCC 4 t clay san SICC 4	UB 4 UB 2 UB 3 UB 4 UB 4 UB 4
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m AG51 0-0.31m 0.31-0.60m 0.60-0.75m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 Ag2 Sh1 Organic s	y sand tren ST As1 warp, lam ST 0 and ST 0 and wate ST 1 As1 warp, lam ST 0 G1 silt with sa	EL 0 hinated sil EL 0 EL 0 r at 0.90m EL 0 hinated sil EL 0 und, well h	SICC 4 t clay san SICC 3 SICC 3 SICC 4 t clay san SICC 4 t clay san SICC 4	UB 4 UB 2 UB 3 UB 4 d UB 4 rery stiff
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m AG51 0-0.31m 0.31-0.60m 0.60-0.75m 0.75-1.10m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 Ag2 Sh1 Organic s DA	y sand tree ST As1 warp, lam ST 0 and ST 0 and wate ST 1 As1 warp, lam ST 0 G1 silt with sa ST	EL 0 EL 0 EL 0 r at 0.90m EL 0 ninated sil EL 0 und, well h EL	SICC 4 t clay san SICC 3 SICC 3 SICC 4 t clay san SICC 4 t clay san SICC 4 umified, v SICC	UB 4 UB 2 UB 3 UB 4 d UB 4 rery stiff UB
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m AG51 0-0.31m 0.31-0.60m 0.60-0.75m 0.75-1.10m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 Ag2 Sh1 Organic s DA 2	y sand tree ST As1 warp, lam ST 0 and ST 0 and wate ST 1 As1 warp, lam ST 0 G1 silt with sa ST 0	EL 0 EL 0 EL 0 r at 0.90m EL 0 ninated sil EL 0 und, well h EL 0	SICC 4 t clay san SICC 3 SICC 3 SICC 4 t clay san SICC 4 t clay san SICC 4 umified, v SICC 3	UB 4 UB 2 UB 3 UB 4 d UB 4 very stiff UB 3
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m AG51 0-0.31m 0.31-0.60m 0.60-0.75m 0.75-1.10m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 Ag2 Sh1 Organic s DA 2 Ga4	y sand tree ST As1 warp, lam ST 0 and ST 0 and wate ST 1 As1 warp, lam ST 0 G1 silt with sa ST 0	EL 0 inated sil EL 0 r at 0.90m EL 0 inated sil EL 0 und, well h EL 0	SICC 4 siCC 3 siCC 3 SICC 3 SICC 4 t clay san SICC 4 t clay san SICC 4 siCC 4 siCC 3	UB 4 UB 2 UB 3 UB 4 d UB 4 cery stiff UB 3
AG50 0-0.35m 0.35-0.55m 0.40-0.54m 0.85-1.10m AG51 0-0.31m 0.31-0.60m 0.60-0.75m 0.75-1.10m	Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 G4 Brown sa DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised DA 3 Ga1 Ag2 Oxidised DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised DA 2 Ga4 Orange s Topsoil DA 2 Ga4 Orange s Topsoil DA 2 Ga4 Orange s Topsoil DA 2 Ga4 Orange s Topsoil DA 2 Ga4 Orange s Topsoil DA 2 Ga4 Orange s Topsoil DA 3 Ga1 Ag2 Orange s Topsoil DA 3 Ga1 Ag2 Orange s Topsoil DA 3 Ga1 Ag2 Orange s Topsoil DA 3 Ga1 Ag2 Orange s Topsoil DA 3 Ga1 Ag2 Orange s Topsoil DA 3 Ga1 Ag2 Orange s Topsoil DA 3 Ga1 Ag2 Oxidised DA 3 Ga1 Ag2 Oxidised DA 3 Ga1 Ag2 Oxidised DA 3 Ga1 Ag2 Oxidised DA 3 Ga1 Ag2 Oxidised DA 3 Ga1 Ag2 Oxidised DA 3 Ga1 Ag2 Oxidised DA 4 Ag2 Sh1 Organic s DA 2 Oxidised DA	y sand tree ST As1 warp, lam ST 0 and ST 0 and wate ST 1 As1 warp, lam ST 0 G1 silt with sa ST 0 y mottled s	EL 0 inated sil EL 0 r at 0.90m EL 0 inated sil EL 0 und, well h EL 0 sand wate	SICC 4 t clay san SICC 3 SICC 3 SICC 4 t clay san SICC 4 t clay san SICC 4 t clay san SICC 3 sicc 4 sicc 3 sicc 3 sicc 3 sicc 4 sicc 4 sicc 3 sicc 4 sicc 4 sicc 4 sicc 5 sicc 3 sicc 5 sicc 5 sicc 5 sicc 5 si 5 sicc 5 sicc 5 si 5 si	UB 4 UB 2 UB 3 UB 4 d UB 4 very stiff UB 3 0.90m

AG52					
0-0.25m	Topsoil				
0.25-0.60m	DA	ST	EL	SICC	UB
0.20 0.000	3	1	0	4	4
	Gal An2	As1	U		•
	Ovidised	warn lan	ninatod cil	t clav san	d
0.60.0.70m		waip, ian		Clay Sall	
0.60-0.70m	DA	51	EL	SICC	UB
	4	0	0	4	4
	Ag1 Sh1	Ga2			
	Organic :	silt sand			
0.70-0.75m	DA	ST	EL	SICC	UB
	4	0	0	4	4
	Ga4				
	Brown sa	and			
0.75-1.10m	DA	ST	EL	SICC	UB
	2	0	0	3	3
	Ga4	Ũ	0	0	0
	Buff fine	cand wat	or at 0.80	m	
Transact 7	Dun nine	Sanu, wat	ei al 0.00		
	ador opoil	hoon not	drillod		
AG55 - 100ation ut	ider spoli	neap, not	unieu		
<u>AG54</u>	T				
0-0.30m	ropsoli	о т		0100	
0.30-0.84m	DA	SI	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warp, lan	ninated sil	t clay san	d
0.84-1.00m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag2 Sh1	G1			
	Organic s	sandy silt			
1.00-1.05m	DĂ	ST	EL	SICC	UB
	4	0	0	3	3
	Ga4	-	-	•	-
	Brown sa	and			
1 05-1 20m		ST	FI	SICC	LIB
1.00 1.2011	2	0	0	3	3
	2	0	0	5	5
	Ga4	d water of	1 10m		
A 0 5 5	Dun sand	, water a	1.10m		
<u>AG55</u>	-				
0-0.35m	Topson	~			
0.35-0.95m	DA	SI	EL	SICC	UB
	3	1	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warp, lan	ninated sil	t clay san	d
0.95-1.10m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag3 Sh1	G++ Tl			
	Organic	silt with sa	and, well h	numified o	ccasional woody macros
0.95-1.20m	DĂ	ST	EĹ	SICC	ÚB
	4	0	0	3	3
	Ga4	Ū	0	0	•
	Brownes	and			
1.20.1.50m		et et		SICC	LID
1.20-1.5011		0		3100	
	2 Co1	0	0	3	3
	Ga4			0	
1050	Pale grey	y sand, wa	ater at 1.3	um	
AG56	-				
0-0.38m	lopsoil				

Trent and Peak Archaeology Keadby 3 Low Carbon Gas Power Station, Lincolnshire Report No.047/2021

0.38-0.84m	DA 3	ST 1	EL 0	SICC 4	UB 4
	Ga1 Ag2	2 As1	ninatad ai		
0.84-1.20m	DA 4 Ag3 Sh1	ST 0 G++ TI	EL 0	SICC 3	UB 4
0.85-1.20m	Organic DA 4	silt with sa ST 0	and, well I EL 0	numified c SICC 3	occasional woody macros UB 3
1.20-1.30m	Brown sa DA 2	and ST 0	EL 0	SICC 3	UB 3
	Pale gre	y sand, w	ater at 1.3	80m	
<u>AG57</u> 0-0.30m	Topsoil				
0.30-0.55m	DA 3	ST 1	EL 0	SICC 4	UB 4
	Oxidised	l warp, lar	ninated si	It clay sar	ıd
0.55-0.65m	DA 4 Ag1 Sh1	ST 0 G2	EL 0	SICC 3	UB 4
	Organic	sand, wel	l humified		
0.65-1.10m	DA 2 Ga4	ST 0	EL 0	SICC 3	UB 3
	Pale gre	y trending	into buff	fine sand	
AG58					
0-0.35m	Topsoil	_			
0.35-0.65m	DA 3	ST 1	EL 0	SICC 4	UB 4
	Ga1 Ag2	2 As1	0	7	т
0.65.0.94m	Oxidised	warp, lar	ninated si	It clay san	ld I I I I
0.65-0.84m	ДА 4	0	EL 0	3	UВ 4
	Ag1 Sh1	G2			
0.84.0.00m	Organic	silt sand,	well humi	fied	
0.64-0.9011	4	0	0	3	3
	Ga/				
0.00.1.20m	0a4				
0.90-1.2011	Brown sa	and		SICC	ID
	Brown sa DA 2	and ST 0	EL 0	SICC 3	UB 2
	Brown sa DA 2 Ga4 Buff fine	and ST 0 sand. ver	EL 0 v stiff	SICC 3	UB 2
1050	Brown sa DA 2 Ga4 Buff fine	and ST 0 sand, ver	EL 0 y stiff	SICC 3	UB 2
<u>AG59</u> 0-0 30m	Brown sa DA 2 Ga4 Buff fine	and ST 0 sand, ver	EL 0 y stiff	SICC 3	UB 2
<u>AG59</u> 0-0.30m 0.30-1.10m	Brown sa DA 2 Ga4 Buff fine Topsoil DA	and ST 0 sand, ver ST	EL 0 y stiff EL	SICC 3	UB 2 UB
<u>AG59</u> 0-0.30m 0.30-1.10m	Brown sa DA 2 Ga4 Buff fine Topsoil DA 3	and ST 0 sand, ver ST 1	EL o y stiff EL o	SICC 3 SICC 4	UB 2 UB 4
<u>AG59</u> 0-0.30m 0.30-1.10m	Brown sa DA 2 Ga4 Buff fine Topsoil DA 3 Ga1 Ag2 Oxidised	and ST 0 sand, ver ST 1 2 As1 warp, lar	EL 0 y stiff EL 0 ninated si	SICC 3 SICC 4 It clav sar	UB 2 UB 4
AG59 0-0.30m 0.30-1.10m 1.10-1.25m	Brown sa DA 2 Ga4 Buff fine Topsoil DA 3 Ga1 Ag2 Oxidised DA	and ST 0 sand, ver ST 1 As1 warp, lar ST	EL 0 ry stiff EL 0 ninated si EL	SICC 3 SICC 4 It clay san SICC	UB 2 UB 4 UB

	Ag1 Sh1 Organic	G2 silt sand. v	well humif	ied	
1.25-1.40m	DA 4 Ga4	ST 0	EL 0	SICC 3	UB 3
1.40-1.50m	Brown sa DA 2 Ga4	and ST 0	EL 0	SICC 3	UB 2
Transect 8	Buff sand	d, damp			
0.0.35m 0.35-0.50m	Topsoil DA 2	ST	EL	SICC	UB
	Ga1 Ag2 Oxidised	As1 warp, lan	o ninated sil	4 t clay san	4 d
0.50-0.60m	DA 4 Ag1 Sh1	ST 0 G2	EL 0	SICC 3	UB 4
0.60-0.80m	Organic :	silt sand, v	well humif	ied SICC	LIR
0.00-0.8011	4 Ga4	0	0	3	3
0.80-1.00m	Brown sa DA 2 Ga4	and ST 0	EL 0	SICC 3	UB 2
1001	Buff sand	d, damp			
<u>AG61</u> 0-0.60m	Topsoil				
0.60-1.10m	DA 3 Ga4 Buff sand	ST 1 d water at	EL 0 0.80m	SICC 4	UB 4
<u>AG62</u> 0-0.60m	Topsoil				
0.60-1.10m	DA 3 Ga4 Buff sand	ST 1	EL 0	SICC 4	UB 4
<u>AG63</u>		a water at	0.0011		
0-0.60m 0.60-0.70m	Topsoil DA 4 Ag1 Sh1	ST 0 G2	EL 0	SICC 3	UB 4
0.70-1.20m	DA 2 Ga4 Buff sand	ST 0 d water at	EL 0	SICC 3	UB 3
<u>AG64</u>	Tana ''	.,			
0-0.30m 0.30-0.90m	DA DA Ga1 Ag2	ST 0 As1	EL 0	SICC 4	UB 4

	Oxidised	warp, str	uctureless	s silt clay	
0.90-1.00m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh1	G2			
1 00 1 00m	Organic	silt sand	-		
1.00-1.20m	DA 4	51		3100	0B 2
	4 Ga4	0	0	3	5
	Brown sa	and			
1.20-1.30m	DA	ST	EL	SICC	UB
	2	0	0	3	3
	Ga4				
	Buff san	d			
<u>AG65</u>					
0-0.40m	Topsoil	от	-		
0.40-0.50m	DA	SI	EL	SICC	0B
	3 Ga4	1	0	4	4
	Orange (sand war	n		
0 50-1 18m	DA	ST	FI	SICC	UB
0.00 1.1011	3	2	0	4	4
	Ga1 Aq2	As1	C C	•	
	Oxidised	warp, lan	ninated si	lt clay san	d
1.18-1.30m	DA	ST	EL	SICC	UB
	4	0	0	3	4
	Ag1 Sh1	G2			
4 00 4 40	Organic	sandy silt,	, more org	anic at to	p
1.30-1.40m	DA	SI	EL	SICC	0B
	Z Ga4	0	0	3	3
	Buff san	d water a	t 1 10m		
AG66	Bull Sull	a, water a			
0-0.40m	Topsoil				
0.40-1.10m	DA	ST	EL	SICC	UB
	3	2	0	4	4
	Ga1 Ag2	As1			
	Oxidised	warp, lan	ninated si	It clay san	d
1.10-1.35m	DA	ST	EL	SICC	UB
	4		0	3	4
	Agi Shi	GZ II condy cilt	occocior		macros wat at 1 10m
1 35-1 <i>4</i> 0m		Sanuy Siit. ST			IIIACIOS, WELAL I.TUIII
1.55-1.4011	4	0	0	3	3
	Ga4	U	U	0	0
	Brown sa	and			
1.40-1.60m	_				
	Orange s	sand			
Transact Q	Orange	sand			
Transect 5	Orange	sand			
AG67	Orange	sand			
<u>AG67</u> 0-0.51m	Orange s	some eler	nents of r	nade grou	ind (modern CBM)
<u>AG67</u> 0-0.51m 0.61-0.76m	Orange s Topsoil, DA	sand some eler ST	nents of r EL	nade grou SICC	ind (modern CBM) UB
<u>AG67</u> 0-0.51m 0.61-0.76m	Topsoil, DA 3	some eler ST 2	nents of r EL 0	nade grou SICC 4	ınd (modern CBM) UB 4
<u>AG67</u> 0-0.51m 0.61-0.76m	Orange s Topsoil, DA 3 Ga1 Ag2 Oxidised	sand some eler ST 2 As1 warp lan	nents of r EL 0	nade grou SICC 4	ind (modern CBM) UB 4
<u>AG67</u> 0-0.51m 0.61-0.76m	Orange s Topsoil, DA 3 Ga1 Ag2 Oxidised DA	sand Some eler ST 2 As1 warp, lan ST	nents of r EL 0 ninated si FL	nade grou SICC 4 It clay san SICC	ind (modern CBM) UB 4 Id UB
AG67 0-0.51m 0.61-0.76m 0.76-0.84m	Orange s Topsoil, DA 3 Ga1 Ag2 Oxidised DA 4	sand ST 2 As1 warp, Ian ST 0	nents of r EL 0 ninated si EL 0	nade grou SICC 4 It clay san SICC 3	ind (modern CBM) UB 4 id UB 4
AG67 0-0.51m 0.61-0.76m 0.76-0.84m	Orange s Topsoil, DA 3 Ga1 Ag2 Oxidised DA 4 Ag1 Sh1	sand ST 2 As1 warp, lan ST 0 G2 TI	nents of r EL 0 ninated si EL 0	nade grou SICC 4 It clay san SICC 3	ind (modern CBM) UB 4 Id UB 4
AG67 0-0.51m 0.61-0.76m 0.76-0.84m	Orange s Topsoil, DA 3 Ga1 Ag2 Oxidised DA 4 Ag1 Sh1 Organic	sand ST 2 As1 warp, lan ST 0 G2 TI sandy silt;	nents of r EL 0 ninated si EL 0 , occasior	nade grou SICC 4 It clay san SICC 3 al woody	ind (modern CBM) UB 4 Id UB 4 macros,

DA 4 Ga4	ST 0	EL 0	SICC 3	UB 3
Brown sa Fine buff	and sand with	occasion	al inorgar	nic silt clay laminations
Topsoil DA 3	ST 2	EL 0	SICC 4	UB 4
Ga1 Ag2 Oxidised DA 4	As1 warp, larr ST	ninated sil	t clay san SICC	d UB 4
Ag1 Sh1 Organic s DA	G2 sandy silt ST	EL	SICC	UB
2 Ga4	0	0	3	3
Pale grey	/ sand, tre	ending into	buff sand	d water strike at 0.90m
Topsoil DA	ST	EL	SICC	UB
3 Ga1 Ag2	2 As1	0	4	4
Oxidised	warp, lan	ninated sil	t clay san	
4 Ag1 Sh1	0 G2	0	3	4
Organic s	sandy silt		0100	
DA 2	0	ЕL 0	3	3
Ga4 Pale grey	/ sand, tre	ending into	buff sand	d water strike at 0.90m
0,	-	Ū.		
Topsoil	ст	-		
DA 2 Ga4	0	ЕL 0	3	4
Pale grey	/ sand trei	nding into	buff sad,	water strike at 0.80m
Topsoil				
DA	ST	EL	SICC	UB
2 Ga4	0	0	4	4
Pale grey	/ sand	-		
DA 2 Ga4	0	ЕL 0	2	1
Buff sand	d, very we	t at 0.60m	n	
Tonsoil				
DA 3	ST 2	EL 0	SICC 4	UB 4
Ga1 Ag2	As1		(. L.	
Dxidised DA 4	warp, larr ST 0	inated sil EL 0	t clay san SICC 3	a UB 4
	DA 4 Ga4 Brown sa Fine buff Topsoil DA 3 Ga1 Ag2 Oxidised DA 4 Ag1 Sh1 Organic s DA 2 Ga4 Pale grey Topsoil DA 3 Ga1 Ag2 Oxidised DA 2 Ga4 Pale grey Topsoil DA 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 Pale grey A 2 Ga4 A 3 Ga4 A 2 Ga4 A 3 Ga4 A 3 Ga4 A 3 Ga4 A 3 Ga4 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A	DA ST 4 0 Ga4 Brown sand Fine buff sand with Topsoil DA ST 3 2 Ga1 Ag2 As1 Oxidised warp, lam DA ST 4 0 Ag1 Sh1 G2 Organic sandy silt DA ST 2 0 Ga4 Pale grey sand, tree Topsoil DA ST 3 2 Ga1 Ag2 As1 Oxidised warp, lam DA ST 4 0 Ag1 Sh1 G2 Organic sandy silt DA ST 3 2 Ga1 Ag2 As1 Oxidised warp, lam DA ST 2 0 Ga4 Pale grey sand tree Topsoil DA ST 3 2 Ga1 Ag2 As1 Oxidised warp, lam DA ST 4 0	DA ST EL 4 0 0 Ga4 Brown sand Fine buff sand with occasion Topsoil DA ST EL 3 2 0 Ga1 Ag2 As1 Oxidised warp, laminated sil DA ST EL 4 0 0 Ag1 Sh1 G2 Organic sandy silt DA ST EL 2 0 0 Ga4 Pale grey sand, trending into Topsoil DA ST EL 3 2 0 Ga1 Ag2 As1 Oxidised warp, laminated sil DA ST EL 3 2 0 Ga1 Ag2 As1 Oxidised warp, laminated sil DA ST EL 4 0 0 Ag1 Sh1 G2 Organic sandy silt DA ST EL 2 0 0 Ga4 Pale grey sand, trending into Topsoil DA ST EL 2 0 0 Ga4 Pale grey sand trending into Topsoil DA ST EL 2 0 0 Ga4 Buff sand, very wet at 0.60m	DA ST EL SICC 4 0 0 3 Ga4 Brown sand Fine buff sand with occasional inorgan Topsoil DA ST EL SICC 3 2 0 4 Ga1 Ag2 As1 Oxidised warp, laminated silt clay sam DA ST EL SICC 4 0 0 3 Ag1 Sh1 G2 Organic sandy silt DA ST EL SICC 2 0 0 3 Ga4 Pale grey sand, trending into buff sam Topsoil DA ST EL SICC 3 2 0 4 Ga1 Ag2 As1 Oxidised warp, laminated silt clay sam DA ST EL SICC 3 2 0 4 Ga1 Ag2 As1 Oxidised warp, laminated silt clay sam DA ST EL SICC 4 0 0 3 Ag1 Sh1 G2 Organic sandy silt DA ST EL SICC 4 0 0 3 Ag1 Sh1 G2 Organic sandy silt DA ST EL SICC 4 0 0 3 Ag1 Sh1 G2 Organic sandy silt DA ST EL SICC 2 0 0 3 Ga4 Pale grey sand, trending into buff sam Topsoil DA ST EL SICC 2 0 0 4 Ga4 Pale grey sand trending into buff sam Topsoil DA ST EL SICC 2 0 0 4 Ga4 Pale grey sand trending into buff sam Topsoil DA ST EL SICC 2 0 0 4 Ga4 Pale grey sand trending into buff sam Topsoil DA ST EL SICC 2 0 0 4 Ga4 Pale grey sand trending into buff sam Topsoil DA ST EL SICC 2 0 0 4 Ga4 Pale grey sand trending into buff sam Topsoil DA ST EL SICC 2 0 0 4 Ga4 Pale grey sand trending into buff sam Topsoil DA ST EL SICC 2 0 0 4 Ga4 Pale grey sam DA ST EL SICC 2 0 0 3 Ga4 Pale grey sam DA ST EL SICC 2 0 0 4 Ga4 Pale grey sam DA ST EL SICC 2 0 0 3 Ga4 Pale grey sam DA ST EL SICC 2 0 0 3 Ga4 Pale grey sam DA ST EL SICC 2 0 0 3 Ga4 Pale grey sam DA ST EL SICC 3 2 0 4 Ga1 Ag2 As1 Oxidised warp, laminated silt clay sam DA ST EL SICC 3 2 0 4 Ga1 Ag2 As1 Oxidised warp, laminated silt clay sam DA ST EL SICC 3 2 0 4 Ga1 Ag2 As1 Oxidised warp, laminated silt clay sam

1.20-1.25m	Ag1 Sh1 Organic DA 4 Ga4	G2 sandy silt ST 0	EL 0	SICC 3	UB 3
1.25-1.45m	Brown sa DA 4 Ga4 Buff san	and ST 0	EL 0	SICC 3	UB 3
AG73					
0-0.35m 0.35-1.20m	Topsoil DA 3	ST 2	EL 0	SICC 4	UB 4
	Ga1 Ag2	2 As1	ninatod ci	ilt clay car	ad a
1.20-1.65m	DA 4 Ag1 Sh1	ST 0 G2	EL 0	SICC 3	UB 4
	Organic	sandy silt	, water st	rike at 1,2	0.
1.65-1.75m	DA 4 Ga4	0	EL 0	SICC 3	0B 3
1.75-2.00m	Brown sa DA 2 Ga4	and ST 0	EL 0	SICC 3	UB 3
	Buff san	d			
<u>AG74</u> 0-0.40m	Topsoil				
0.40-1.00m	DA 3	ST 2	EL 0	SICC 4	UB 4
	Ga1 Ag2 Oxidised	2 As1 I waro Tar	ninated si	ilt clav sar	nd
1.00-1.20m	DA	ST ST	EL	SICC	UB
	4 Ag1 Sh1 Organic	0 G2 sandy silt	0	3	4
1.30-1.55m	DA 2	ST 0	, EL 0	SICC 3	UB 3
	Ga4 Buff san	d ovidise	d at ton		
Transect 10 <u>AG75</u>	Dun San				
0-0.48m	Topsoil,	elements	of made	ground (m	odern CBM fragments)
0.40-0.7 111	3 Ga1 Aq2	2 2 2 As1	0	4	4
0.74.4.00	Oxidised	l warp, lar	ninated si	It clay sar	nd
0.71-1.20m	DA 4	0	EL O	3	ОВ 3
	Pale gre	y sand tre	ending into	buff san	d, water strike at 0.70m
AG76					
0-0.35m 0.35-0.40m	Topsoil DA	ST	EL	SICC	UB

	3 Ga1 Ag2	2 As1	0	4	4
0.40-1.20m	DA	ST	EL	SICC	UB
	4 Ga4	0	0	3	3
	Pale grey	/ sand tre	nding into	buff sand	l, water strike at 0.40m
<u>AG77</u>	Tanaail				
0.40-0.75m	DA	ST	EL	SICC	UB
	3	0	0	4	4
	Ga1 Ag2	As1 warn silt	clay sand		
0.75-0.80m	DA	ST ST	EL	SICC	UB
	4 4 x 0 0 h 4	0	0	3	4
	Ag2 Sh1 Organic	G1 11 sandv silt.	verv drv	occasiona	I woody fragments
0.80-1.30m	DA	ST ST	EL	SICC	UB
	2	0	0	3	2
	Pale grey	/ sand tre	nding into	buff sand	l, water strike at 1.10m
<u>AG78</u>			Ū		
0-0.45m	Topsoil	ст		SICC	LIR
0.45-0.5011	4	0	0	3	4
	Ag2 Sh1	G1			
0 50-0 53m	Organic s	Sandy Silt	FI	SICC	UB
0.00 0.0011	4	0	0	3	2
	Ga4				
0 53-1 20m	Brown sa	and ST	FI	SICC	UB
0.000	2	0	0	3	2
	Ga4	cond tro	nding into	buff conc	L water strike at 1 10m
AG79	Fale yies	/ Sanu lie		Dull Salic	i, water strike at 1.1011
0-0.35m	Topsoil				
0.35-0.60m	DA 3	ST	EL	SICC	UB 4
	Ga1 Ag2	As1	0	т	7
0.00.0.75	Oxidised	warp, silt	clay sand		
0.60-0.75m	DA 4	0	EL 0	3	0B 4
	Ag2 Sh1	Ğ1	Ū	0	•
0.75.0.00	Organic s	sandy silt,	-	0100	
0.75-0.80m	DA 4	0	EL 0	3	0B 2
	Ga4	-	-	-	
0.90.1.20m	Brown sa	and ST		SICC	LID
0.80-1.2011	2	0	0	3	2
	Ga4				
4680	Pale grey	/ sand tre	nding into	buff sand	l, water strike at 1.00m
0-0.45m	Topsoil				
0.45-0.90m	DA	ST	EL	SICC	UB
	3 Ga1 4a2	U As1	0	4	4
	Jui Ayz	, 10 1			

	Oxidised warp, silt clay sand					
0.69-1.00m	DA	ST	EL	SICC	UB	
	4	0	0	3	4	
	Ag2 Sh1	G1				
	Organic	sandy silt	, wet			
1.00-1.05m	DA	ST	EL	SICC	UB	
	4	0	0	3	2	
	Ga4					
	Brown sa	and				
1.05-1.20m	DA	ST	EL	SICC	UB	
	2	0	0	3	2	
	Ga4					
	Pale gre	y sand				
<u>AG81</u>						
0-0.45m	Topsoil					
0.45-0.95m	DA	ST	EL	SICC	UB	
	3	2	0	4	4	
	Ga1 Ag2	2 As1				
	Oxidised	b				
0.95-1.05m	DA	ST	EL	SICC	UB	
	4	0	0	3	4	
	Ag2 Sh1	G1				
	Organic	sandy silt	,			
1.05-1.20m	DA	ST	EL	SICC	UB	
	4	0	0	3	2	
	Ga4					
	Brown sand					
1.20-1.50m	DA	ST	EL	SICC	UB	
	2	0	0	3	2	
	Ga4					
1000	butt sand, water strike at 1.20m					
<u>AG82</u>	T					
0-0.45m		ст	-1		סוו	
0.45-0.75M		51	EL	SICC	0B	
	3 Co1 A a 2		0	4	4	
	Gal Agz	ASI Lworp oilt		4		
0.75, 0.80m		ו waip, siii פד			LID	
0.75-0.0011		0		2	1	
	4 1 4 2 5 h 1	0 G1	0	3	4	
	Ayz Sin	sandy silt				
0.80-1.30m		Sanuy Sill	, ⊏I	SICC	LIR	
0.00-1.3011	2	0		3	2	
	∠ Ga4	0	U	5	2	
	Dale are	v sand tro	ndina into	huff san	h water strike at 1 10m	
	i ale grey sand trending into buil sand, water stille at 1.1011					

FIGURES

⁽Ordnance Survey map reproduced with the permission of Her Majesty's Stationery Office © Crown Copyright Licence No. AL 100020618).

Figure 03 - Modelled Surface Showing Thickness of Peat Deposits (m) and fence diagram for deposits in Area 1 Site Code: KAS

0 50 100 m
Lithostratigraphy
Topsoil (Silt Clay)
Oxidised Warp / Fine-Grained Alluvium
Peat / Silt Peat
Fine Brown Sand / Silt Sand
Fine Oxidised Buff Sand
Scale of plan A3 - 1:1750 Drawn by: TK

